

Venkata Keerti Kotaru

Building	Of�line	Applications	with
Angular
Develop	Reliable,	Performant	Web	Applications	for
Desktop	and	Mobile	Platforms

Venkata Keerti Kotaru
Hyderabad, Telangana, India

ISBN 978-1-4842-7929-8 e-ISBN 978-1-4842-7930-4
https://doi.org/10.1007/978-1-4842-7930-4

© Venkata Keerti Kotaru 2022

Standard Apress

Trademarked names, logos, and images may appear in this book. Rather
than use a trademark symbol with every occurrence of a trademarked
name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the bene�it of the trademark owner, with no
intention of infringement of the trademark. The use in this publication
of trade names, trademarks, service marks, and similar terms, even if
they are not identi�ied as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

The publisher, the authors and the editors are safe to assume that the
advice and information in this book are believed to be true and accurate
at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material
contained herein or for any errors or omissions that may have been
made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional af�iliations.

This Apress imprint is published by the registered company APress
Media, LLC part of Springer Nature.
The registered company address is: 1 New York Plaza, New York, NY
10004, U.S.A.

https://doi.org/10.1007/978-1-4842-7930-4

To	my	family

Introduction
Congratulations on beginning to read a new book. This book will help
you learn and build modern web applications with Angular and
TypeScript. Even if you are a beginner in JavaScript and Angular
technologies, the book provides step-by-step instructions to easily
follow along with and build next-generation web applications. It
presents you with a consistent use case across the book. You will build a
few pages for Web Arcade, an imaginary online arcade.

The book primarily focuses on building an application that is
resilient to changes in network connectivity. Traditionally, web
applications work well when online, but they can crash badly if the
connectivity is lost. A decade ago, most applications operated on wired
connections or on relatively stable WiFi networks. Connectivity was not
a factor. Today, applications run on a variety of networks with varying
connectivity and speed. Users expect data not to be lost while they are
on the move switching between networks. The advent of new web
technologies allows developers to build applications that provide better
user experiences. Through the course of this book, you will learn about
these aspects with the help of a single use case, Web Arcade.

The book provides step-by-step instructions to get started with an
Angular application and add progressive web app and service worker
features, and it explores the different con�igurations. It helps you learn
how to build installable web applications with little effort.

Next, the book provides instructions to cache data in IndexedDB. It
details the JavaScript API for creating and managing data in the
database running on the browser’s client machine. Finally, you will
learn how to use Dexie.js, which is a wrapper for the IndexedDB API, to
simplify the implementation.

Throughout the chapters in the book, you will work through Web
Arcade scenarios, which begin with a simple Angular component for
rolling dice. You will see how to build pages that list games, navigate to
the details of a game, and add comments on a game. You will learn how
to build these pages that work even when network connectivity is lost.
You will also build features that create data of�line. For example, users
will be able to add comments while of�line and synchronize once the
connectivity is restored.

We are glad you picked up this book. Happy learning.

Any source code or other supplementary material referenced by the
author in this book is available to readers on GitHub via the book’s
product page, located at https://github.com/Apress/Building-Of�line-
Applications-with-Angular/upload. For more detailed information,
please visit http://www.apress.com/source-code.

Table	of	Contents
Chapter	1:		Building	Modern	Web	Applications

Laying	the	Foundation
Original	Problem
Caveats	with	the	Web	Application	Solution
Use	Case
Code	Samples
Summary

Chapter	2:		Getting	Started
Prerequisites

Node.	js	and	NPM
Yarn
Angular	CLI
Visual	Studio	Code
Http-Server

Create	an	Angular	Application
Add	Service	Worker

Run	the	Angular	Application
Security:		Service	Workers	Need	HTTPS

Working	with	yarn	global	add
Summary

Chapter	3:		Installing	an	Angular	Application
Angular	Components

Create	a	Component
Web	Arcade:		Create	a	Die
Styles	for	the	Component

TypeScript:		Functional	Logic	for	the	Component
Output	(Event	Emitter)	from	the	Component
Input	to	the	Component
HTML	Template
Service	Worker	Con�iguration
Create	Icons

Summary
Chapter	4:		Service	Workers

Service	Worker	Lifecycle
Service	Worker	in	an	Angular	Application
Web	Arcade’s	Service	Worker	Con�iguration
Pattern	Match	Resources	to	Cache
Browser	Support
Summary

Chapter	5:		Cache	Data	with	Service	Workers
Adding	a	Component	to	List	Board	Games
De�ine	a	Data	Structure	for	Board	Games
Mock	Data	Service
Call	the	Service	in	the	Angular	Application

Con�igure	the	Service	in	an	Angular	Application
Create	an	Angular	Service
Provide	a	Service
HttpClient	Service

Cache	the	Board	Games	Data
Angular	Modules
Summary

Chapter	6:		Upgrading	Applications
Getting	Started	with	SwUpdate
Identifying	an	Update	to	the	Application
Identifying	When	an	Update	Is	Activated
Activating	with	the	SwUpdate	Service
Checking	for	a	New	Version
Notifying	the	User	About	the	New	Version
Managing	Errors	in	Unrecoverable	Scenarios
Summary

Chapter	7:		Introduction	to	IndexedDB
Terminology
Getting	Started	with	IndexedDB

Angular	Service	for	IndexedDB
Creating	Object	Store

Using	“onupgradeneeded”	Event
Browser	Support
Limitations	of	IndexedDB
Summary

Chapter	8:		Creating	the	Entities	Use	Case
Web	Arcade:		Game	Details	Page

Of�line	Scenario
Creating	a	Component	for	Game	Details
Routing
Navigate	to	Game	Details	Page
Adding	Comments

Updates	to	Mock	HTTP	Services

Filtering	Game	Details	by	ID
Retrieving	Comments
Adding	Comments

Summary
Chapter	9:		Creating	Data	Of�line

Adding	Comments	Online	and	Of�line
Identifying	the	Online/	Of�line	Status	with	a	Getter
Adding	Online/	Of�line	Event	Listeners
Adding	Comments	to	IndexedDB
The	User	Experience	of	Adding	Comments

Synchronizing	Of�line	Comments	with	the	Servers
Retrieving	Data	from	IndexedDB
Bulking	Updating	Comments	on	the	Server	Side
Deleting	Data	from	IndexedDB

Updating	Data	in	IndexedDB
Summary

Chapter	10:		Dexie.	js	for	IndexedDB
Installing	Dexie.	js
Web	Arcade	Database

Object	Store/	Table
IndexedDB	Versions

Connecting	with	Web-Arcade	IndexedDB
Initializing	IndexedDB

Transactions
Add
Delete

Update
Retrieve
More	Options
Summary

Addendum
Creating	a	Proxy	for	Mock	Services
Using	the	Bottom	Sheet	for	a	Die	Roll
Adding	the	Bottom	Sheet	in	Web	Arcade
Showing	the	Bottom	Sheet	with	the	Die	Component
Using	a	Hash	Location	Strategy
Summary
References	and	Links
Index

About	the	Author
Venkata	Keerti	Kotaru
has been in software development for
almost two decades. He has helped
design and develop scalable, performant,
modern software solutions for multiple
clients. He holds a master’s degree in
software systems from the University of
St. Thomas, Minneapolis and St. Paul,
USA.

He is the author of several books on
Angular, and he also contributes to the
developer community by blogging,
writing articles, and speaking at
technology events. He has written for
Dotnet Curry (DNC Magazine). He has
presented technology sessions at
AngularJS Hyderabad, AngularJS Chicago,
and Google Developer Groups at Hyderabad including the annual event
Dev Fest. He is a three-time Microsoft MVP.

About	the	Technical	Reviewer
Yogendra	Sharma
is a developer with experience in the
architecture, design, and development of
scalable and distributed applications,
with a core interest in microservices and
DevOps. Currently he works as a
technical architect at Intelizign
Engineering Services Pvt Pune. He also
has hands-on experience in technologies
such as AR/VR, CAD CAM, simulation,
AWS, IoT, Python, J2SE, J2EE, NodeJS,
VueJs, Angular, MongoDB, and Docker. He
constantly explores technical novelties,
and he is open-minded and eager to
learn about new technologies and
frameworks. He has reviewed several
books and video courses published by Packt and Apress.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2022
V. K. Kotaru, Building	Of�line	Applications	with	Angular
https://doi.org/10.1007/978-1-4842-7930-4_1

1.	Building	Modern	Web	Applications
Venkata Keerti Kotaru1

-, Hyderabad, Telangana, India

Welcome! Congratulations on picking this book to learn how to build
of�line applications with Angular. This introductory chapter sets the
expectations and framework for the book. It provides a brief look at
traditional web application development and why creating just another
traditional web application is not enough.

Laying	the	Foundation
This book provides some perspective and elaborates on cutting-edge
features like service workers and IndexedDB. It provides step-by-step
instructions for creating an Angular application and incrementally
adding features to build a sophisticated web application. The book uses
an imaginary online gaming system, Web Arcade, to illustrate the
techniques. It acts as a use case for building a modern web application
that is resilient to network connectivity drops and speed changes.

Let’s establish the context with a little bit of history. As you might
know, web applications have been popular for more than two decades.
There have been a tremendous number of applications built. In fact,
many web applications are mission critical for running businesses.

In the early 2000s, these applications replaced thick	clients, which
were installed on a device, a desktop, or a laptop. The thick clients
posed a challenge because the applications had to be built by targeting
an operating system. Most applications were not interoperable between
Apple macOS and Microsoft Windows; however, there were exceptions.

https://doi.org/10.1007/978-1-4842-7930-4_1

A few organizations and developers used Java-based technologies for
building the thick clients, which ran on a Java Virtual Machine (JVM).
Before such solutions gained traction, web applications took over.
Largely, the thick clients were not compatible across different platforms
and operating systems.

Web applications helped address this problem. A web application
runs on a browser. The browsers interpret and execute HyperText
Markup Language (HTML), JavaScript, and Cascading Style Sheets
(CSS). The features are standardized by the European Computer
Manufacturers Association (ECMA) and Technical Committee 39
(TC39).

The scenario changed with the advent of mobile apps, which are
installed and run on mobile devices. This could be a mobile phone or a
tablet device like an iPad. Apple’s App Store, which started in 2008, had
a major role in organizations’ and developers’ shift to apps. Today,
Apple’s iOS and Google’s Android are the two major mobile platforms.
iOS uses App Store, and Android uses Google Play (also called Play
Store) to distribute apps for their respective platforms.

Original	Problem
On mobile devices, the apps brought back the original problem: you
need to develop apps for respective platforms. You build your native
app once for iOS and repeat for Android. Of course, there are
alternatives, which include workarounds with hybrid and cross-
platform technologies. They suit the major use cases, but there are
always a few work�lows for which such a solution does not help.
Moreover, there are compromises with the native user experience; an
iOS user may not feel the user interface matches the platform if
originally built for Android. Many work�lows and applications need
large screens and the �lexibility provided by desktop-class operating
systems. There has only been minor traction bringing iOS and Android
apps to the desktop. In most cases, the user experience is limited.

Caveats	with	the	Web	Application	Solution

Organizations and developers build web applications that cater to all
major platforms and browsers on iOS and Android and on macOS and
Microsoft Windows. Remember, organizations adapted this solution
originally while moving away from thick clients. At that time, the
devices were largely stationary at a desk and not mobile. They were
connected by either a cable or a WiFi network. The connectivity was
stable. While building applications, connectivity was not a factor.

Mobile platforms have changed this scenario. Users are highly
mobile, moving in and out of networks. Applications need to consider
the connectivity factor. Imagine a user loses connectivity temporarily.
When she attempts to launch a mobile web application, a traditional
web application shows a message similar to “page cannot be displayed,”
and the application does not launch. The user cannot proceed. The
problem might be worse if the user is in the middle of a transaction.
Data is lost, and the user might have to retry the entire work�low.

Apps provide a ready-made solution. Remember, apps are installed
on the devices. Users can launch the app and interact with past data or
messages even when the user is disconnected. If a user submitted a
transaction or a form, an app can cache temporarily and synchronize
when online.

Take the example of a social application such as Twitter. When
of�line, it allows you to launch the application, see cached tweets, and
even compose a new tweet and save it as a draft.

Modern web applications support such advanced caching features.
This book details how to build a modern web application that allows
the users to function when of�line.

Use	Case
The book uses Web Arcade, an online game system on the Web as a use
case. You will build the application with Angular and TypeScript. The
book provides step-by-step instructions for how to create the
application, various components, services, and more.

Throughout the course of this book, you will learn how to do the
following:

Install and upgrade web applications.
Cache the application so that it is accessible while of�line.

Cache the data retrieved.
Enable the application to function while of�line. With the help of the
Web Arcade use case, we will detail how to add data to the system.
When of�line, data is cached on the device. Once back online, the app
will provide an opportunity to synchronize with the server.

On desktop and mobile devices, modern browsers like Google
Chrome, Microsoft Edge, Safari (on Mac and iOS), and Firefox allow
users to install the application. The book provides step-by-step
instructions to enable them to install the web application and create a
shortcut for the application. The shortcut provides easy access to the
web application and launches it in its own window (unlike a typical
web application, which always launches in a browser). Figure 1-1
shows the Web Arcade application installed on macOS. Notice the Web
Arcade application icon in the Dock. You will see a similar icon in the
Windows taskbar. The application is in its own separate window, not
among the browser tabs.

Figure	1-1 Web Arcade application installed on macOS

This book details how to use a service worker (with Angular) to
cache the application. It provides step-by-step instructions to set up a
development environment and test the caching features. At this stage
the application loads even if the network is unavailable. In an example,
you may use the feature to roll a die even when the application is
of�line. As you can imagine, rolling a die does not require server-side
connectivity. It is a random number generated between 1 and 6. The
application visualizes rolling the die (Figure 1-2).

Figure	1-2 Rolling a die in the Web Arcade application

You’ll start by caching the application data and using it while of�line
(or on a slow network). You will see how the service worker cache is
utilized when the real server-side services are unavailable.

The book also details how to create data; speci�ically, the Web
Arcade application will allow users to add comments even while of�line.
The comments are cached using IndexedDB, a local database. The
application identi�ies once the connectivity is established. It
synchronizes the cached of�line comments with the server-side services
and database.

Later, you’ll need to create new versions of the application and the
database. The book covers features and implementations to prompt
users about an available upgrade. It details how to provide seamless
transitioning to the new database and upgrade its structure.

Code	Samples
This section explains how to download and run the code samples. Clone
the Web Arcade repository from this GitHub location: https://git-
scm.com/downloads. Open a terminal/command prompt and use
the following command, which requires Git to be installed on your
machine.

git clone https://github.com/kvkirthy/web-
arcade.git

Note Git is a popular distributed source code management (SCM)
tool. It has a small footprint and works with minimal resources and
disk space on your machine. It is also free and open source.

By default, you have cloned the master branch. Check out a branch
called book-samples for the samples of the examples in the book.
First change the directory to web-arcade. Next, check out the branch
book-samples.

cd web-arcade
git checkout book-samples

We anticipate enhancements and will incorporate feedback in the
master branch accordingly. However, the branch book-samples is
dedicated to matching the code samples in the book exactly.

Next, run the following command to install all the required
packages for the code samples. Throughout the book, we provide
instructions to use Node Package Manager (NPM) and Yarn. While NPM
is the default package manager with Node.js, Yarn is an open source
project backed by Facebook. It has received traction in the developer
community due to its strengths in performance and security. We advise
you to pick one and stick to it until the end of the book.

npm install
(or)

https://git-scm.com/downloads

yarn install

Note This command needs Node.js, NPM, or Yarn installed on your
machine. If they are unavailable, read along for the moment. Detailed
instructions are provided in the next chapter.

Next, run the following command to start the Web Arcade sample
application:

npm run start-pwa
(or)
yarn start-pwa

The previous command starts a full-�ledged application running on
a developer-class web server. It is useful to run the application while
reading and understanding the code. However, if you are making
changes and updating the code, the changes need to show up in the
application. Typically, the page reloads, and the application updates
with the changes. It is dif�icult to do this with the previous command.
You might have to end the process and restart every time you make a
change. Hence, consider using the following command while updating
the code. It instantly updates the application with the changes.

npm start
(or)
yarn start

It is a good practice to leave the application running in the
background. Throughout the book you will continuously create and
update the code and run the samples. The scripts run by the previous
code keep the application up and running. Do not terminate this script,
unless directed.

Note At the time of writing, the command does not support
caching and loading the application while it is of�line. It is an
important feature of the sample application and the concepts

explained in this book. To test caching features with service workers,
use the start-pwa command.

Summary
This chapter touched on the need for new implementations like service
workers and IndexedDB, which are natively supported by most modern
browsers. The remainder of the book will detail how to implement and
integrate these technologies in a web application. We also introduced a
use case called Web Arcade, an online gaming system on the Web,
which will be used throughout the rest of the book.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2022
V. K. Kotaru, Building	Of�line	Applications	with	Angular
https://doi.org/10.1007/978-1-4842-7930-4_2

2.	Getting	Started
Venkata Keerti Kotaru1

-, Hyderabad, Telangana, India

This chapter provides instructions for how to get started with an
Angular application. It is the foundation for all the upcoming chapters.
Follow the steps detailed in this chapter to set up your development
environment. The upcoming chapters will use the software, libraries,
and packages detailed in this guide.

Speci�ically, the chapter provides steps to create a sample
application, namely, Web Arcade. The sample application will provide
use cases and examples for all the concepts and their explanation in
this book. In this chapter, you will start by creating the Web Arcade
Angular application.

You will also add of�line features to the Web Arcade Angular
application. You will see the introductory details of how to access the
Angular application, without network connectivity.

Prerequisites
To create, run, and test Angular applications, you need the list of
software to install and set up on your computer. Luckily, all the software
and libraries listed and described in this book are open source and free
to use, at least for an individual developer. This section lists the
minimum required software to begin creating an Angular application.

Node.js	and	NPM

https://doi.org/10.1007/978-1-4842-7930-4_2

Node.js is a cross-platform JavaScript runtime that works on the
JavaScript engine called V8. It is primarily used for running JavaScript
on the server side and back end.

In this book, to a large extent you will use Node Package Manager
(NPM), which comes with the Node.js installation. As the name
describes, it is a package manager, which helps you install and manage
libraries and packages. It keeps track of the entire dependency tree for
a package. With simple commands, it helps download and manage the
library and its dependencies.

For example, Lodash is a highly useful library of JavaScript utilities
and functions. With a single command you can install and add the
package as a dependency to your project. Others downloading your
project do not need to perform additional steps.

Download and install Node.js from the of�icial Node.js website,
https://nodejs.org. Click the download link on the website. It
lists installers for long-term support (LTS) and the latest version.
Preferably choose LTS. Next, select an option based on your operating
system and platform. It will download the installer.

It installs Node.js and NPM. At the time of authoring this book, the
Node.js version is 14.17.0, and NPM is 6.14.13.

Once the download �inishes, open the installer, and follow the steps
to �inish the installation. See Figure 2-1 for the introduction screen and
version information.

https://nodejs.org/

Figure	2-1 Node.js installer

Yarn
While NPM is the default package manager with Node.js, Yarn is an
open source project backed by Facebook. It has received traction in the
developer community due to its strengths in performance and security.
The examples in the book include Yarn and NPM commands. If you are
new to Angular development, pick one and consistently use it for all the
samples and the exercises. Including Yarn provides a choice to the
reader. Sometimes, teams and organizations could be picky in selecting
their toolset (for various reasons including important considerations
like security). Hence, it helps to learn both NPM and Yarn.

To install Yarn, run the following command:

npm install -g yarn

Note Notice the option -g, which stands for “global.” The package
is available across all the projects and the directories. Hence, it might
need elevated permissions to run and install.

On a Windows machine, run this command as an administrator.
On macOS, run the command as a super user. Consider the

following snippet. The command will prompt for the root user
password.

 sudo npm install -g yarn

If you do not use the -g option, you may still use yarn (or any
other tool installed without -g) at the directory level. You might need
to re-install it for every new directory or a project. It is not a bad
solution if you prefer to keep resources local to the project or a
directory.

To verify the installation has been successful, run yarn --
version. Ensure the yarn command is identi�ied and returns version
information.

% yarn --version
1.22.10

Angular	CLI
While working with Angular applications, Angular CLI is a highly useful
command-line tool. You will be using this tool for all Angular-related
tasks including creating projects, adding new Angular components,
using Angular services, running the Angular application, doing build-
related tasks, etc.

Install Angular CLI with the following command:

 npm install -g @angular/cli
(or)
 yarn global add @angular/cli

To verify the installation has been successful, run ng --version.
See Listing 2-1. Ensure the Angular CLI command is identi�ied and

returns version information.

% ng --version

Listing	2-1 Verify Angular CLI Installation

Angular CLI: 12.0.1
Node: 14.16.1
Package Manager: npm 6.14.12
OS: darwin x64
Angular: undefined

Package Version
--

@angular-devkit/architect 0.1200.1 (cli-only)
@angular-devkit/core 12.0.1 (cli-only)
@angular-devkit/schematics 12.0.1 (cli-only)
@schematics/angular 12.0.1 (cli-only)

Note Notice in Listing 2-1 that Angular is unde�ined; however,
Angular CLI has a version 12.0.1. The installation is successful.
Angular will show a version once you create a project with the CLI.

Visual	Studio	Code
Strictly speaking, you can use any simple text editor to write Angular
code and use a terminal or a command prompt to compile, build, and
run the application. This may be true for most programming languages.
However, for better productivity and ease of development, use an
integrated development environment (IDE) like Visual Studio Code. The
software is built by Microsoft, and it’s free, light in footprint, easy to

download, and easy to install. Its features are highly useful while
working with Angular applications. However, it is a personal
preference. You may choose to pick any IDE that you are comfortable
with to create and run the Angular application described in this book.

Download Visual Studio Code from its website,
https://code.visualstudio.com. Use the download link on the
page. At the time of writing this content, the website automatically
identi�ies your operating system and presents an appropriate download
link.

See Figure 2-2 for a snapshot of Visual Studio Code.

Figure	2-2 Visual Studio Code snapshot

The following are a few other alternatives:
Sublime	Text : This is shareware and a useful text editor. It is a good
�it for JavaScript development for its smaller footprint, speedy
response, and ease of use.

https://code.visualstudio.com/

WebStorm : This is a sophisticated IDE built by JetBrains for
JavaScript development. It has custom features for many popular
frameworks including Angular and Node.js. However, it is proprietary
software that needs to be purchased.
Atom : This is open source and a free text editor. It is a cross-platform
application built with HTML and JavaScript.

Http-Server
Http-Server is a quick and ef�icient way to run a Node.js-based web
server for static �iles. During development, you will be using this NPM
package for working with the cached application.

Run the following command to install Http-Server globally on your
machine:

 npm install -g http-server
(or)
 yarn global add http-server

To verify the installation has been successful, run http-server -
-version. Ensure the http-server command is identi�ied and
returns version information.

% http-server --version
v0.12.3

Note If you are having trouble with yarn global add and a
package is not found even after the global install, refer to the section
“Working with yarn global add” later in the chapter.

Create	an	Angular	Application
Now that all the prerequisites are available, you are ready to create a
new Angular application. You will use Angular CLI, which you just
installed (@angular/cli). Angular CLI’s executable is named ng. In
other words, you will run the tool with an ng command. It uses the
option you provide with the ng command to perform a task.

Follow these instructions to create a new Angular application:

ng new web-arcade

ng new is an Angular CLI command to create a new application. As
you create a new application, typically CLI prompts you to choose
whether you want to use Angular routing and stylesheet format. See
Listing 2-2.

For the sample application, choose to implement routing. As the
sample application evolves, you will create multiple pages. Navigation
between these pages need Angular routing.

Note Routing is an important feature of single-page applications
(SPAs) because most web applications have more than one page.
Users navigate between the pages. Each page will have a unique URL.

In an SPA, as users navigate between pages, an entire page does
not reload. With the help of the routing implementation (Angular
routing in this case), the SPA updates only the sections of the page
that change between two URLs.

For the second prompt about selecting a stylesheet format, if you prefer
to match the examples in the book, choose Sass. However, if you are
comfortable with one of the other stylesheet formats, feel free to
choose the other application.

 % ng new web-arcade
? Would you like to add Angular routing? Yes
? Which stylesheet format would you like to use?
Sass [https://sass-
lang.com/documentation/syntax#the-indented-synt
ax]

Listing	2-2 Prompts While Creating a New Angular Application

Angular CLI out of box provides a choice of the following stylesheet
formats:

Cascading	Style	Sheets	(CSS) : This is the traditional approach to
stylesheet development. It works well while working small units of
code.
Syntactically	Awesome	Style	Sheets	(SCSS	-	Sassy	CSS) : This provides
better programming-type features compared to CSS. The features
include variables, functions, mixins, and nested rules. It is a superset
of CSS.

The stylesheet is written into a �ile with the extension .scss. It is
preprocessed to CSS. It is fully compatible with CSS. Hence, all the valid
CSS statements work in an .scss �ile as well.

The SCSS syntax includes curly braces to indicate the beginning and
end of a block and semicolons for the end of a stylesheet statement.

Syntactically	Awesome	Style	Sheets	(SASS) : This is similar to SCSS,
except that the stylesheet statements are indented instead of using
curly braces and semicolons. To explicitly indicate the �ile format,
SASS code is written into .sass �iles.
Leaner	Style	Sheets	(LESS) : This is another superset of CSS that
allows you to use variables, functions, mixins, etc.

One of the advantages of using Angular CLI is that it scaffolds the
build process to include preprocessing the stylesheets. While running
or building the application, there is no additional effort involved in
creating the scripts or running the preprocessors.

Next, Angular CLI copies �iles and installs the application (Listing 2-
3).

CREATE web-arcade/README.md (1055 bytes)
CREATE web-arcade/.editorconfig (274 bytes)
CREATE web-arcade/.gitignore (604 bytes)
CREATE web-arcade/angular.json (3231 bytes)
CREATE web-arcade/package.json (1072 bytes)
CREATE web-arcade/tsconfig.json (783 bytes)
CREATE web-arcade/.browserslistrc (703 bytes)
CREATE web-arcade/karma.conf.js (1427 bytes)
CREATE web-arcade/tsconfig.app.json (287 bytes)
CREATE web-arcade/tsconfig.spec.json (333 bytes)
CREATE web-arcade/src/favicon.ico (948 bytes)

CREATE web-arcade/src/index.html (295 bytes)
CREATE web-arcade/src/main.ts (372 bytes)
CREATE web-arcade/src/polyfills.ts (2820 bytes)
CREATE web-arcade/src/styles.sass (80 bytes)
CREATE web-arcade/src/test.ts (743 bytes)
CREATE web-arcade/src/assets/.gitkeep (0 bytes)
CREATE web-
arcade/src/environments/environment.prod.ts (51
bytes)
CREATE web-arcade/src/environments/environment.ts
(658 bytes)
CREATE web-arcade/src/app/app-routing.module.ts
(245 bytes)
CREATE web-arcade/src/app/app.module.ts (393
bytes)
CREATE web-arcade/src/app/app.component.sass (0
bytes)
CREATE web-arcade/src/app/app.component.html
(23809 bytes)
CREATE web-arcade/src/app/app.component.spec.ts
(1069 bytes)
CREATE web-arcade/src/app/app.component.ts (215
bytes)
⠼ Installing packages (npm)..

Listing	2-3 Angular CLI: Create and Install Web Arcade

Add	Service	Worker
To add of�line features to the Angular application, run the command in
Listing 2-4.

ng add @angular/pwa

This command install @angular/pwa on default
project
If you are running the above command on an
existing Angular # solution that has multiple

projects, use
ng add @angular/pwa --project projectname

Listing	2-4 Add Progressive Web App Features for Of�line Access

Service workers are one of the features of progressive web app
(PWAs). They run in the background in a browser and enable you to
cache the application, including the scripts, assets, remote service
responses, etc.

Traditionally, web applications are easy to deploy and manage. To
add new features, developer or engineering teams deploy a new
version on one or more web servers. Users access the new application
and the new features when they next open the website. However,
mobile apps and installed client applications (Windows or Mac) need
regular updates. Installation needs to happen on thousands of client
devices (even more in number, depending on the application).

However, mobile apps and client applications have an advantage
that they are accessible even when the network is unavailable. For
example, mobile apps in the social media space (Twitter or Facebook)
may show posts even when there is no network available. A traditional
web application shows a message to the effect of “page not found”
when the network is unavailable. Users completely lose access to the
application. They cannot view or interact with cached data.

Progressive web apps, speci�ically service workers, bridge this gap.
You continue to take advantage of easy deployment and management of
a web application. It allows you to install the application, cache scripts
and assets, and more.

The command in Listing 2-4 allows you to cache scripts, assets, and
data. It adds the needed con�igurations and registers the service worker
in the Angular application module.

Run	the	Angular	Application
So far, you have set up an environment for working with Angular
applications, created a new application called Web Arcade, and
installed PWA features. Next, run the bare-bones application to verify
everything is working smoothly. To run the Web Arcade application,

change the directory to the root of the application folder and execute
the following command:

npm run build
#(or)
yarn build

The previous command runs an NPM script (namely, build) in the
package.json �ile. This is one of the �iles created by Angular CLI
while creating the new project. Open the �ile in Visual Studio Code or an
IDE of your choice. You will see the scripts in Listing 2-5.

 "scripts": {
 "ng": "ng",
 "start": "ng serve",
 "build": "ng build",
 "watch": "ng build --watch --configuration
development",
 "test": "ng test"
 },

Listing	2-5 Scripts in the package.json File

Note The build script provided just before Listing 2-5 runs ng
build. Remember, Angular CLI’s executable is ng. You may run ng
build directly on the console or on the terminal. Both will result in
the same outcome.

The previous build command outputs to dist/web-arcade. Next,
run Http-Server in this directory. It starts a Node.js-based web server to
render the Angular application. The web server runs on the default port
8080. See Listing 2-6.

% http-server dist/web-arcade

Starting up http-server, serving dist/web-arcade
Available on:

 http://127.0.0.1:8080
 http://192.168.0.181:8080

Listing	2-6 Run Http-Server on Web Arcade Build Output

The application is now accessible on localhost at port number 8080.
Open the link http://localhost:8080 on any modern browser.
See Figure 2-3. This image is captured on Google Chrome.

Figure	2-3 New application running on Http-Server

Note You can use the option -p <new port number> to start
the Http-Server on a different port, for example http-server
dist/web-arcade -p 4100.

Notice that it’s the default content scaffolded by Angular CLI. It has
useful links and documentation for continuing to build the application
with Angular. In the upcoming chapters in the book and code snippets,

we will enhance the code samples and create new components and
services to create the Web Arcade application.

Next, open the developer tools and reload the application. On
Google Chrome, you’ll �ind Developer Tools under the menu More Tools.
Navigate to the Network tab and look for ngsw.json. This is a
con�iguration �ile for a service worker. This allows you to register the
Web Arcade service worker with the browser. See Figure 2-4.

Figure	2-4 Chrome Developer Tools for Web Arcade

In the throttle options (on the Network tab of the developer tools),
select the option Of�line. Now, if you navigate to any online website in
this browser, it does not load the page. However, localhost:8080
continues to work, rendered from the Service Worker cache.

Security:	Service	Workers	Need	HTTPS
A service worker is a powerful feature, which can act as a proxy to all
the network requests from the application. A proxy implementation
could result in security risks. Hence, browsers enforce a secure HTTPS

connection . If a website without HTTPS implementation attempts to
register a service worker, browsers ignore the feature.

However, notice that we did not implement an HTTPS certi�icate
while deploying to Http-Server. Browsers do not perform this check for
HTTPS on localhost. It is an exception to the rule. It helps develop the
applications easily. Implementing an HTTPS connection for
development purposes could be a tedious task. And the applications
accessible on localhost are installed and running on the local machine;
hence, there is no security risk.

Notice that Listing 2-6 shows that the application is available on
two IP addresses, shown here:

127.0.0.1. This stands for localhost.
192.x.x.x. This is the local IP address of the machine. It does not have
a secure HTTPS certi�icate installed.

Even though 192.x.x.x is a local IP address, browsers do not have a
way to validate this. Considering the connection is not HTTPS, the
browser does not register the service worker. See Figure 2-5. The
browser is in of�line mode. The service worker does not load the page
in spite of the service worker. When you bring the application online,
the service worker does not load in the Network tab.

Figure	2-5 The service worker does not work on an HTTP connection

Working	with	yarn	global	add
Yarn provides a few commands including add, list, and remove to
install a package, list packages, and remove packages, respectively.
These packages are installed in the node_modules of the given
directory. The directory is the scope of the command or the action.

However, with a pre�ix of yarn global, the command runs at a
global level. The global level typically means for all the
directories/projects of a logged-in user. Run the command in Listing 2-
7 to see the global bin directory for Yarn. Notice that it is under the
logged-in user’s directory. This is the default path for a Yarn
installation.

macOS
% yarn global bin
/Users/logged-in-user/.yarn/bin

Microsoft Windows
C:> yarn global bin
C:\Users\logged-in-user\AppData\Local\Yarn\bin

Listing	2-7 Show Global Yarn bin Directory

If this directory is not included in the environment variable path,
packages do not work even after global installation. Set the path and
retry the package installed. See Listing 2-8 to set the path.

#On Microsoft Windows, set path with the following
command
set PATH=%path%;c:\users\logged-in-
user\AppData\Local\Yarn\bin

#On macOS, set path with the following command
export PATH="$(yarn global bin):$PATH"

Listing	2-8 Set Path to Yarn Global bin Directory

Summary
The chapter was a getting-started guide for building an Angular
application with the service worker for of�line features. It provided a
list of prerequisite software and libraries, along with download and
installation instructions. Most software and libraries used in this book
are open source and free.

Exercise:	Creating	the	Web	Arcade	Application
Set up a development environment on your computer for Angular. Be
sure to install Node.js.
1. Pick a package manager for installing and managing the Angular

and TypeScript (or JavaScript) packages. Choose to use NPM or
Yarn. Preferably, stay with your decision for all the future
exercises.

2.
Install and verify Angular CLI, preferably at the global level.

3.
Install Http-Server, preferably at the global level.

4.
Create a new Angular project and add @angular/pwa.

5.
Build and deploy the �irst version of the project on Http-Server.

6.
Review and ensure the service worker is available when the
network is unavailable.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2022
V. K. Kotaru, Building	Of�line	Applications	with	Angular
https://doi.org/10.1007/978-1-4842-7930-4_3

3.	Installing	an	Angular	Application
Venkata Keerti Kotaru1

-, Hyderabad, Telangana, India

This chapter begins by providing instructions to create new screens
and components in an Angular application. It provides introductory
details about a component and then provides enough details to build an
of�line Angular application. If you are looking for in-depth information
about a component and Angular concepts, read the book Angular	for
Material	Design or refer to the Angular documentation provided in the
references at the end of the book. Toward the end of this chapter, you
will package the application to be installed on a client device (desktop
or mobile).

Angular	Components
A web application is a composition of many web pages. In a web page,
the view that the user interacts with, including labels, text �ields,
buttons, etc., is built with HTML. Document Object Model (DOM) nodes
compose an HTML page. The DOM is organized as a tree. The HTML
page starts with a root node, typically an html element (<html>
</html>). It has child nodes, and the child nodes have more child
nodes.

As you can imagine, all the browsers know about these HTML
elements. They have built-in implementations to render each element
in the HTML page. For example, if a browser encounters an input

https://doi.org/10.1007/978-1-4842-7930-4_3

element (<input />), it shows a text �ield; the browser will display
the text in a strong element (text) in bold.

However, are we limited to prede�ined elements in HTML? What if
you wanted to create new elements that encapsulate a view and
behavior? Imagine that you want to build a die for Web Arcade.

Create	a	Component
Angular components enable developers to build custom elements.
Components are the building blocks of an Angular application. This
section provides instructions for how to create a new component.

As you saw in Chapter 2, you will use Angular CLI to create and
manage an Angular application. When you set up the development
environment in the previous chapter, you installed Angular CLI, so it
should be ready to use.

To create a new component, run the following command:

% ng generate component components/dice

As you saw earlier, the ng executable runs Angular CLI.

The generate command with Angular CLI creates �iles.
Next, the component collection when used with generate
speci�ies how to add component �iles.
The third parameter speci�ies the component name, dice. Pre�ixing
the value with components/ creates it under the folder
components. It creates the folder if it does not already exist.

Note Alternatively, you may use the following short form, which
uses g for generate and c for component.

% ng g c components/dice

Angular CLI generates the following �iles in a new folder called
src/app/components/dice. See Figure 3-1.

dice.component.html: An HTML template �ile for the markup.
To create a view in a web page, you use HTML. A side of a die is

created with an HTML template.
dice.component.sass: A stylesheet �ile contains SASS styles for
the look and feel of the component. It includes colors, text
decoration, margins, etc.
dice.component.spec.ts: A TypeScript �ile for unit tests.
dice.component.ts: A TypeScript �ile for the functional
implementation of the dice component.

Figure	3-1 Component �iles generated with Angular CLI

Web	Arcade:	Create	a	Die
This section details the code for the dice component . It is an
opinionated take on creating a dice component. Refer to the “Exercise”
section for additional ideas on building a die.

Styles	for	the	Component
Stylesheets manage the look and feel, colors, font, etc., for a component.
The styles can be applied on elements of the component. It is a good
practice to scope the stylesheet local to the component. This is the
default behavior in an Angular application. This section details how to
create a stylesheet for the dice component.

Notice that, in the Web Arcade code sample, the src/assets
directory has six PNG �iles for each side of a die. Use these images in the
stylesheets to show the sides of a die. Begin by creating variables in the

stylesheet for each side. Consider Listing 3-1 for a list of variables with
a URL reference to the sides of the die images. The left side of the colon
(:) is a variable name. The right side of the colon is a value, in this case
a PNG image of the die. Use the url() function to include the image
�ile in CSS.

// Variables in SASS
$side1:url('/assets/side1.png')
$side2:url('/assets/side2.png')
$side3:url('/assets/side3.png')
$side4:url('/assets/side4.png')
$side5:url('/assets/side5.png')
$side6:url('/assets/side6.png')

Listing	3-1 Sides of the Die Images

Next, create CSS classes for each side of a die, usable on a div
element. See Listing 3-2.

div.img-1
 background-image: $side1

div.img-2
 background-image: $side2

div.img-3
 background-image: $side3

div.img-4
 background-image: $side4

div.img-5
 background-image: $side5

div.img-6
 background-image: $side6

Listing	3-2 Code for the CSS Class That De�ines Each Side of a Die

Each img-x class (for example, img-6) is a CSS class. It is pre�ixed
with a div. In the HTML, the CSS class img-6 can be applied only on a
div element.

Note Remember, SASS �iles do not use curly braces or semicolons.
Notice that the indentation of the CSS style under the element and
class name. That is, the style background image named $side6
relates to div.img-6 as it is indented a tab further, indicating it
relates to the CSS class.

TypeScript:	Functional	Logic	for	the	Component
Each component has at least one TypeScript �ile and a TypeScript class.
A component’s functional/behavioral logic is written in this class. For
example, consider the logic to roll a die and generate a random number
between 1 and 6. That is the functional/behavioral logic of the dice
component. This section covers how to create the TypeScript class for
the dice component.

Output	(Event	Emitter)	from	the	Component
So far, you have seen that the component has a stylesheet to show any
one of the six sides of a die. When you roll a die, it draws one of the six
numbers. The code making use of the dice component might need the
result of rolling a die. Consider this the output. Create an
EventEmitter object with an output decorator for the output. Use
the emit() function on this object to output the value outside the
component. Continue reading for further explanation and the code
samples.

Input	to	the	Component
The component might also allow a value to be set from outside the
component. As long as it is a legal value (a value between 1 and 6), the
component can show on the die. Consider this the input. Create a class-
level variable and decorate it with Input(). This acts as an attribute to

the component. To this attribute, an input value can be provided by the
code using the component.

Consider the TypeScript shown in Listing 3-3 and Figure 3-2. Notice
the highlighted text in bold, lines 7 and 8. The Input() decorator
allows the variable value set from outside the component. The
Output() decorator enables the rollResult value emitted from the
component.

import { Component, Input, OnInit, Output,
EventEmitter } from '@angular/core';
1. @Component({
2. selector: 'wade-dice',
3. templateUrl: './dice.component.html',
4. styleUrls: ['./dice.component.sass']
5. })
6. export class DiceComponent implements OnInit {
7. @Input() draw: string = '';
8. @Output() rollResult = new
EventEmitter<number>();
9. constructor() { }
10. ngOnInit(): void { }
11. }

Listing	3-3 Dice Component TypeScript File

Figure	3-2 Input and output between the dice and app components

Also notice Listing 3-3, lines 1 to 5. The component decorator
speci�ies metadata for the component.
selector: As described earlier, components are reusable custom
elements. While using the component in an HTML �ile, you will refer
to the component using this value. In this example, see <wade-
dice></wade-dice>.

Note wade- is an arbitrary pre�ix chosen for all the
components in the Web Archive code samples. The default used by
Angular is app.

template-url: This refers to the HTML �ile in use for the
component. See Figure 3-1. It shows the HTML �ile created for the
dice component.
style-urls: This refers to the stylesheet �iles in use for the
component. There can be more than one stylesheet. Hence, it is an

array of values. See Figure 3-1. It shows the SASS �ile created for the
dice component.

Notice the constructor shown in line 9. It instantiates the TypeScript
class. The function in line 10, ngOnInit(), is an Angular lifecycle
hook invoked after the constructor. Hence, when this function is
invoked, the class variables are already instantiated. It is an ideal place
for setting the context for Angular components.

In the current dice component case, we set the context by rolling
the die, generate a random number between 1 and 6, and show that
side of the die. Alternatively, the dice component also allows you to set
a value externally, from outside the component. Consider Listing 3-4.

01: @Input() draw: string = '';
02: @Output() rollResult = new
EventEmitter<number>();
03:
04: constructor() { }
05:
06: ngOnInit(): void {
07: if(this.draw){
08: this.showOnDice(+this.draw);
09: } else {
10: this.rollDice();
11: }
12: }

Listing	3-4 ngOnInit() Hook for the Component

Note TypeScript class variables and methods (functions) are
accessed with the this keyword.

Notice lines 1 and 7. this.draw is an input attribute to the
component. If an input is provided to the component, you show the
value on the die. The Angular code using the component explicitly
provides a value. You do not need to roll the die to generate a random
number. See Listing 3-5.

On the other hand, when no input is provided, roll the die, generate
a random number, and show the value on die. See listing 3-6.

Note Notice the + pre�ix on line 8 of Listing 3-4. The input attribute
is a string value. The + pre�ix typecasts the string value to a number.

/*
 At class level, a variable
selectedDiceSideCssClass is declared.

selectedDiceSideCssClass: string = '';
/*
01: // show the given number (draw parameter) on
the dice
02: showOnDice(draw: number){
03: // the css class img-x show appropriate
side on the dice.
04: switch (draw) {
05: case 1: {
06: this.selectedDiceSideCssClass = 'img-
1';
07: break;
08: }
09: case 2: {
10: this.selectedDiceSideCssClass = 'img-
2';
11: break;
12: }
13: case 3: {
14: this.selectedDiceSideCssClass = 'img-
3';
15: break;
16: }
17: case 4: {
18: this.selectedDiceSideCssClass = 'img-
4';

19: break;
20: }
21: case 5: {
22: this.selectedDiceSideCssClass = 'img-
5';
23: break;
24: }
25: case 6: {
26: this.selectedDiceSideCssClass = 'img-
6';
27: break;
28: }
29: default: {
30: break;
31: }
32: }
33: }

Listing	3-5 Show the Given Number on a Die

Remember the stylesheet in Listings 3-1 and 3-2. They de�ine CSS
classes img-1 to img-6, which show images depicting the six sides of
the die. Listing 3-5 sets an appropriate CSS class name to a variable
called selectedDiceSideCssClass. You will use this CSS class in
the HTML template.

To roll the die (when no input provided), use the function
rollDice() .

01: rollDice(){
02: let i = 0;
03:
04: // run the provided function 25 times
depicting a rolloing dice
05: const interval = setInterval(() => {
06:
07: // random number generator for numbers
between 1 and 6

08: let randomDraw =
Math.round((Math.random()*5) + 1);
09: this.showOnDice(randomDraw);
10:
11: // After 25, clear the interval so that
the dice doesn't roll next time.
12: if(i > 25) {
13: clearInterval(interval);
14: this.rollResult.emit(randomDraw);
15: }
16:
17: i += 1;
18:
19: }, 100);
20: }

Listing	3-6 Roll the Die

The function attempts to mimic a rolling die. Hence, it sets values on
the die for 25 times (an arbitrary number). It runs the code every 100
milliseconds. See the lines between 5 and 19.

A setInterval JavaScript function accepts a callback function as
the �irst parameter.
The second parameter indicates the number of milliseconds after
which the �irst callback function runs.

See Listing-3-7 for a short and empty snippet for easier
understanding.

setInterval(() => { }, // first parameter,
callback
 100 // second parameter, interval duration in
 // milliseconds
);

Listing	3-7 The setInterval() Function

For generating a random number, refer to line 8 in Listing 3-6.

Math.random() generates a value between 0 and 1.
Multiplying this number by 5 limits the value to between 0 and 5.
A die doesn’t show a decimal value; hence, use the JavaScript function
Math.round() to round the number.
A die doesn’t show a zero; hence, add 1.

Note When do you use rollResult? Imagine moving a piece in a
board game based on a number drawn by the die. The board game
component uses a random number result from the dice component.
The dice component emits the number for the board game.

In an example, say the die draws 6. A piece on Monopoly should
move six places. The dice component shows 6 and emits the
number. The Monopoly component receives 6 and moves a piece by
six positions.

Refer to the complete code snippet of the TypeScript class �ile. See
Listing 3-8.

import { Component, Input, OnInit, Output,
EventEmitter } from '@angular/core';

@Component({
 selector: 'wade-dice',
 templateUrl: './dice.component.html',
 styleUrls: ['./dice.component.sass']
})
export class DiceComponent implements OnInit {

 @Input() draw: string = '';
 @Output() rollResult = new EventEmitter<number>
();

 selectedDiceSideCssClass: string = '';

 constructor() { }

 ngOnInit(): void {

 if(this.draw){
 this.showOnDice(+this.draw);
 } else {
 this.rollDice();
 }
 }

 // show the given number (draw parameter) on the
dice
 showOnDice(draw: number){
 // the css class img-x show appropriate side
on the dice.
 switch (draw) {
 case 1: {
 this.selectedDiceSideCssClass = 'img-1';
 break;
 }
 case 2: {
 this.selectedDiceSideCssClass = 'img-2';
 break;
 }
 case 3: {
 this.selectedDiceSideCssClass = 'img-3';
 break;
 }
 case 4: {
 this.selectedDiceSideCssClass = 'img-4';
 break;
 }
 case 5: {
 this.selectedDiceSideCssClass = 'img-5';
 break;
 }
 case 6: {
 this.selectedDiceSideCssClass = 'img-6';
 break;
 }

 default: {
 break;
 }
 }
 }

// generate a random number between 1 and 6
// and set on the dice
 rollDice(){
 let i = 0;

// run the provided function 25 times depicting a
rolling dice
 const interval = setInterval(() => {

 // random number generator for numbers
between 1 and 6
 let randomDraw =
Math.round((Math.random()*5) + 1);
 this.showOnDice(randomDraw);

 // After 25, clear the interval so that the
dice doesn't roll next time.
 if(i > 25) {
 clearInterval(interval);
 this.rollResult.emit(randomDraw);
 }
 i += 1;
 }, 100);
 }
}

Listing	3-8 Dice Component, TypeScript File

HTML	Template
Refer to the HTML template in Listing 3-9 for the view that the user
interacts with.

<div
 class="dice"
 [ngClass]="selectedDiceSideCssClass"
></div>

Listing	3-9 Dice Component, HTML Template

Notice that the CSS class value dice is static. It provides padding,
height, and width that does not change on the �ly while the die rolls.

ngClass, on the other hand, uses property binding to set the CSS
class dynamically. It is an Angular attribute directive. ngClass applies
CSS classes provided through the variable
selectedDiceSideCssClass on the div element. See the
showOnDice() function in Listing 3-8. It conditionally selects a CSS
class name.

Note An attribute directive allows you to change the appearance
and behavior of a DOM element. ngClass is a built-in directive
provided by Angular to update CSS classes on the �ly. It’s highly
useful for controlling the look and feel of an element dynamically.

Property binding enables one-way data binding TypeScript
variables on the HTML properties.

Now, the dice component is ready to use. Go to
app.component.html and remove the default content that resulted
in Figure 2-3 of Chapter 2. It was a placeholder for the application
created with Angular CLI. Remember, the selector for the dice
component is wade-dice. Use it in the app component of the HTML
template. See Listing 3-10.

<div class="container align-center">
 <wade-dice></wade-dice>
</div>

Listing	3-10 App Component of the HTML Template

Note At this point, the div and the two CSS classes container
and align-center do not have a major signi�icance. They help
present content better on the page.

Remember the code from Listing 3-4. The dice component
generates a random number if you do not provide a value with the
draw attribute (input). Hence, Listing 3-10 rolls the die, generates a
random number, and sets it on the die. Instead, if you use the
attribute draw, it does not roll the die. It just shows side 4 of the die.

<wade-dice draw="4"></wade-dice>

See Figure 3-3 for the result.

Figure	3-3 Using the dice component in the app component

Service	Worker	Con�iguration
Next, you’re ready for the application to be installed. Once that’s done,
we can review how to install the application on a desktop.

In Chapter 2, when you installed @angular/pwa, it created the
following con�igurations. The ng add @angular/pwa command
adds the @angular/service-worker package . Consider the
following updates to the application:
1.

The command adds the manifest.webmanifest �ile to the
application. When you load the application on a desktop or a
mobile browser, it identi�ies a progressive web app with the help of
this con�iguration �ile. The ng add @angular/pwa command
updates index.html and adds a link to this con�iguration �ile.

2.
The command adds the ngsw-config.json �ile to the
application. This is an Angular-speci�ic con�iguration �ile for a
service worker. It is used by the CLI and build process. It con�igures
the caching behavior for the application.

3.
In Angular’s application module, it imports the service worker
module and registers it.

Note While loading the web application, the ngsw-config.json
�ile is fetched every time from the web server. It is not cached with
the service worker. It helps identify changes to the application and
fetches a completely new version.

Create	Icons
A PWA needs a variety of icon �iles. Remember, it is an installable
application now. You need the launch icons with varying resolutions.
These icons are used on mobile device home screens among apps,
shortcuts on a desktop, on the Windows taskbar or macOS Dock, etc.
The default icon is an Angular logo. You can use the icons in the Web
Arcade code sample located at web-arcade/src/assets/icons.

The service worker application needs icons with the following
resolutions (in pixels):

72 × 72
96 × 96
128 × 128
144 × 144
152 × 152
192 × 192
384 × 384
512 × 512

Copy the icons to the folder <your-project-
folder>/src/assets/icons. Run the build command. Notice that
the icons are copied over to the deployable directory along with the
application bundle. Ensure Http-Server is running in the dist/web-
arcade directory so that the URL, http://localhost:8080,
continues to serve the application.

Launch the application in a new browser window that supports
service workers. Notice that there is an install button for the Web
Arcade application. Figure 3-4 shows the install option on Google
Chrome on a desktop.

Figure	3-4 Installing the service worker

Note Launching the application in a new browser window (or a
tab) ensures the old version of the app is not served from the service
worker cache. Instead, it identi�ies an updated application bundle on
the web server and downloads the new application.

Click Install. It’s now available on the desktop. See Figure 3-5.

Figure	3-5 Installed application on macOS

Summary
The chapter continued to build on the Web Arcade sample application.
In the process, the chapter detailed Angular and service worker
concepts. It also developed the stylesheet for the die and concluded by
installing the application on a desktop and mobile device and listing the
con�igurations added by the package @angular/pwa.

Exercise
The code sample described in the chapter does not show a button
to repeatedly roll the die. Add a button to the dice component to
roll again. Use click events to handle rolling the die on demand.

Create sides of a die with CSS instead of using images.
Create a die with 8 or 12 sides.
Explore animations for rolling a die.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2022
V. K. Kotaru, Building	Of�line	Applications	with	Angular
https://doi.org/10.1007/978-1-4842-7930-4_4

4.	Service	Workers
Venkata Keerti Kotaru1

-, Hyderabad, Telangana, India

Service workers run in the background on your browser. They provide a
foundation for modern web applications and are installable, work of�line,
and are reliable in low-bandwidth situations. This chapter provides an
introduction to service workers. It discusses the caching capabilities of
service workers and how to use them in an Angular application. It details
the lifecycle of a service worker. Next, the chapter discusses Angular’s
con�igurations and features while working with the service workers. It
explains how to implement a cache for the Web Arcade sample application.
Toward the end, it provides details about browser compatibility.

Service workers are a network proxy running on the browser. They can
intercept outgoing network requests from the browser. These requests
include an application’s JavaScript bundle �iles, stylesheets, images, font,
data, etc. You may program a service worker to respond to a request from
the cache. This enables web applications to be resilient to network speeds
and a loss of connectivity. Unlike a traditional web application, which
returns a “page not found” error when you lose connectivity, service
workers enable the application to utilize installed and cached resources.
You can program the application to load cached data or show a graceful
error message. Even in low-bandwidth scenarios, service workers enable
you to build �luid and responsive applications with great user experiences.

The service workers are preserved even after the application or the
browser is closed. To see a list of active service workers, navigate to the
page chrome://inspect/#service-workers on Google Chrome or
edge://inspect/#service-workers on Microsoft Edge. See Figure
4-1. Notice the popular websites including Angular’s Angular.io among the

https://doi.org/10.1007/978-1-4842-7930-4_4

applications that use the service workers. Also notice that the Web Arcade
sample application’s dev URL localhost:8080 has registered a service
worker.

Figure	4-1 Inspecting the service workers on Google Chrome

Note To see all the service workers registered by various web
applications you have accessed on your computer, launch the service
worker internals page. Notice that the �irst URL,
chrome://inspect/#service-workers, listed only the active
service workers. Access the service worker internals by navigating to
chrome://serviceworker-internals on Google Chrome (or
edge://serviceworker-internals on Microsoft Edge).

Please note this page might be deprecated in the future. The
chrome://inspect/#service-workers URL might include all the
service worker debug features.

Service	Worker	Lifecycle
This section details the service worker lifecycle and its states running in
the background (on the browser). See Figure 4-2, which depicts a service
worker lifecycle. It begins by registering a new service worker. A web
application using a service worker registers on loading in the browser. The
“register” can occur every time a user loads the application. The browser

ignores a fresh registration if the service worker has already been
registered.

Successful registration of a service worker triggers an install event. A
typical install event handles the caching logic. All the static resources
including application bundles, images, fonts, and stylesheets are cached
during the install event. These are con�igurable.

The service worker installation is atomic. A failure in downloading and
caching one or more resources causes the event to error out completely.
The next time the user accesses the website, it attempts to install it again.
This is to ensure there are no partially installed applications causing
unforeseen problems and bugs.

While the application is open, an installed service worker is activated. It
runs in the background and acts as a proxy to all the network calls.
Depending on the application logic and con�iguration, you may serve the
data from the cache. If the data is not found in the cache, invoke the
network service and retrieve data over the network.

If the application or the service worker is not in use, the service worker
terminates to save memory. When needed, it activates the service worker.
Notice the terminate button in Figure 4-1 (in the browser window) for
manually terminating an active service worker. You may use this to force
close the service worker. It helps relaunch the service worker afresh. If
your computer is running low on resources, you may terminate a service
worker to save memory. Also, notice the Inspect link, which launches the
dev tools allowing you to explore network resources and the application
source code.

See Figure 4-2 for a depiction of the work�low and events.

Figure	4-2 Service worker lifecycle

Service	Worker	in	an	Angular	Application
Angular makes it easier to use the service worker and caching features in
your application. Angular scaffolds a lot of the functionality described in
the previous section “Service Worker Lifecycle,” especially the caching
features. This section details out-of-the-box Angular features for
integrating the service workers.

Angular CLI generates ngsw-config.json when you add
@angular/pwa to the project. It provides a service worker con�iguration
for an Angular application. The Angular build process uses this
con�iguration. One of the aspects of con�iguration is a list of static and
dynamic resources to be cached and installed. Static resources include
JavaScript bundle �iles that constitute the application, stylesheets, images,
font, and icons. Typical dynamic resources include data responses.

A ngsw-config.json �ile includes the following sections :

appData: Remember, the Web Arcade Angular application is installable
and maintains versions. This �ield in the con�iguration provides a brief
description of the application version. As you update the application, use
this �ield to provide meaningful details about the upgrade and the
version of the software.
index: This speci�ies the root HTML �ile for the Angular application and
the single-page application (SPA). In the Web Arcade sample application,
it is index.html in the src directory. With this �ield index, you are
providing a link to the starting point of the application. As you will see
next, Web Arcade caches this �ile using the service worker.
assetGroups: This is a con�iguration for assets, typically JavaScript
application bundles, stylesheets, font, images, icons, etc. The assets could
be part of the Angular project or downloaded from a remote location like
a content delivery network (CDN).

Notice Web Arcade’s ngsw-config �ile in Listing 4-1. It includes �iles
that constitute the application, i.e, index.html, all the JavaScript
bundles, and the CSS �iles. It also includes assets such as images, icons,
fonts, etc.

Note Remember, in Web Arcade the SASS �iles compile to CSS. Service
workers are working on the build output of the Angular application. All
the �iles including JavaScript bundles, compiled CSS, images, etc., are
relative to the dist directory (output of the yarn build command).

1. You can con�igure multiple assetGroups. Notice that the �ield is an
array. You can list JSON objects with the con�iguration details. An
assetGroup object de�ines the following �ields :

a.
name: This is an arbitrary title for an asset group.

b.
resources: The resources are the �iles or URLs to be cached by
the service worker. As mentioned, the �iles could be JavaScript �iles,
CSS stylesheets, images, icons, etc. On the other hand, for resources
such as fonts (and a few other libraries), you may use CDN
locations, which are URLs.
i.

files: This is an array of �iles con�igured for the service
worker to cache.

ii.

urls: This is an array of URLs con�igured for the service
worker to cache.

At build time, it is not likely you will know every �ile to be

cached. Hence, the con�iguration allows you to use �ile and URL
patterns. See the section “Pattern Match Resources to Cache” for
more details.

c. installMode: Install mode determines how to cache the
resources for the �irst time when there is no existing version of the
service worker on the browser. It supports two modes of caching.
iii.

prefetch: Cache all the resources, �iles, and URLs at the
beginning. The service worker does not wait for the resource
to be requested by the application. As and when the
application requests, the resource is readily available in the
cache.

This approach is useful for the root index.html �ile, core
application bundles, primary stylesheets, etc. However, the
prefetch install mode could be bandwidth intensive.

Prefetch is the default install mode, when no con�iguration
value is provided.

iv. lazy: Cache resources only when the application requests it
for the �irst time If a particular resource is con�igured but

for the �irst time. If a particular resource is con�igured but

never requested, it is not cached. It is ef�icient. However, the
resource is available of�line only from the second use.

2.
updateMode: Update mode determines how to cache the resources
when a new version of the application is found. This is for a service
worker (an Angular application) that is already installed in the
browser. As you know, unlike a typical web application, the service
worker enables caching an Angular application. It also allows you to
discover and install updates as and when available. It supports two
modes of caching.
a.

prefetch: Download and cache all the resources, �iles, and URLs
while updating the application. The service worker does not wait
for the resource to be requested by the application. As and when
the application requests a resource, it is readily available in the
cache.

Default: When no con�iguration value is provided, it uses the
value set for installMode.

b.
lazy: Cache resources only when the application requests it for
the �irst time. If a particular resource is con�igured but never
requested, it is not cached. This is ef�icient. However, the resource
is available of�line only from the second use.

This con�iguration value is overridden if installMode is
prefetch. For it to cache truly in lazy mode, installMode
needs to be lazy as well.

3. dataGroups: While assetGroups enables caching application
assets, largely static resources, dataGroups help cache dynamic data
requests. It is an array of data group objects. You can con�igure
multiple dataGroups. You can list JSON objects with the
con�iguration details. A dataGroup object de�ines the following �ields
:
a.

name: This is an arbitrary title for a data group.
b. urls: This is an array of strings that con�igure a list of URLs or a

list of patterns matching the URLs. Unlike assetGroups, the
pattern doesn’t support matching with ? as it is a common
character for query strings in a URL.

c.

version: This helps identify the availability of a new version of
dataGroup resources. The service worker discards old versions
of the cache, fetches new data, and caches the new URL responses.
If a version is not provided, it defaults to 1.

Versioning data groups is useful especially when a resource is
incompatible with the old URL responses.

d. cacheConfig: This de�ines a con�iguration for the data cache
policy. It includes the following �ields:
i.

maxSize: This de�ines an upper limit for the size of the data
to be cached. It is a good practice to limit the size by design.
Browsers (like any other platform) manage and allocate
memory for each application. If the application exceeds the
upper limit, the entire dataset and the cache could be evicted.
Hence, design a system to limit the cache size and prevent
unforeseen results caused due to eviction.

ii. maxAge: dataCache is dynamic in nature. Often data
changes at the source. Caching data for too long could cause
the application to use obsolete �ields and records. A service
worker con�iguration provides a mechanism to automatically
clear the data at periodic intervals, ensuring the application
does not use stale data. In an example, imagine interest rates
are updated once in a day. This means the cached interest rate
values need to expire in 24 hours. On the other hand, users’
pro�ile pictures are rarely updated. Hence, they can be stored
in the cache longer.

You may qualify the max age value with one or more of the
following:

d stands for days. For example, use 7d for seven days.
h stands for hours. For example, use 12h for 12 hours.
m stands for minutes. For example, use 30m for 30 minutes.
s stands for seconds. For example, use 10s for ten seconds

.
u stands for milliseconds For example use 500u for half a

u stands for milliseconds, For example, use 500u for half a
second.

You can mix and match to create a composite value. For
example, 2d12h30m stands for 2 days, 12 hours, and 30
minutes.

iii.
timeout: Depending on the dataCache strategy (see the
next item), often data requests attempt to use responses over
the network. Only if the network request is taking too long (or
fails), it uses the cached response.

The timeout de�ines a value after which the service worker
ignores the network request and responds with a cached
value.

You may qualify the timeout value with one or more of the
following:

d stands for days. For example, use 7d for seven days.
h stands for hours. For example, use 12h for 12 hours.
m stands for minutes. For example, use 30m for 30 minutes.
s stands for seconds. For example, use 10s for ten

seconds.
u stands for milliseconds, For example use 500u for half a

second.
You can mix and match to create a composite value. For

example 2d12h30m stands for 2 days, 12 hours, and 30
minutes .

iv. strategy: A service worker can use one of the following two
strategies:
performance: For few data requests, the Angular
application may prioritize performance, instructing the
service worker to use cached responses. The response is
returned faster as it comes from the local cache. A new
network service request is sent only after maxAge (see the
previous bullet point on maxAge). In an example, it is useful
with the interest rates request that updates nightly. Imagine
maxAge is set to 1d, and the service worker uses the cache
for 24 hours after which the cache expires.
freshness: In many cases, the Angular application
con�igures the service worker to fetch data over the

con�igures the service worker to fetch data over the
network �irst, before using the cached data. Imagine on a

slow network, if the data request timed out, the service
worker uses the cache so that the application is still usable.

Web	Arcade’s	Service	Worker	Con�iguration
Consider Listing 4-1. It is the default con�iguration �ile generated for the
Web Arcade project.

--- ngsw-config.json ---

01: {
02: "$schema": "./node_modules/@angular/service-
worker/config/schema.json",
03: "index": "/index.html",
04: "assetGroups": [
05: {
06: "name": "app",
07: "installMode": "prefetch",
08: "resources": {
09: "files": [
10: "/favicon.ico",
11: "/index.html",
12: "/manifest.webmanifest",
13: "/*.css",
14: "/*.js"
15:]
16: }
17: },
18: {
19: "name": "assets",
20: "installMode": "lazy",
21: "updateMode": "prefetch",
22: "resources": {
23: "files": [
24: "/assets/**",

25: "/*.
(eot|svg|cur|jpg|png|webp|gif|otf|ttf|woff|woff2|ani)"
26:]
27: }
28: }
29:]
30: }

Listing	4-1 ngsw-con�ig.json File

Notice the �ield assetGroups on line 4. Between lines 5 and 17 is the
�irst asset group object. This object details resources to be cached by the
service worker.
a.

The �ield name is an arbitrary title for the assetGroup (line 6). It
uses an arbitrary name app, which is representative of primary
application resources, like the JavaScript application bundles,
stylesheets, index.html �ile, etc.

b.
The �irst few resource �iles between lines 9 and 12 include the
following:
i.

A fav-icon that is shown along with the title of the application.
ii.

The index.html root HTML �ile for the Web Arcade
application.

iii.

A web manifest con�iguration, which identi�ies the application
as a progressive web app.

c.
Notice asterisks for lines 13 and 14, instructing how to cache all the
JavaScript and CSS �iles (�ile names ending with js and css). See the
“Pattern Match Resources to Cache” section to �ind out more about
pattern matching resources to the cache.

Notice the install mode is prefetch on line 7. It enables the service
worker to download all the assets at the beginning, regardless of
whether they are utilized immediately or not. In an example, a few CSS or
JS �iles may not be used on load. They may be used only after navigating

to a different route or a page. However, prefetch install mode downloads
the entire list of �iles.

Considering these �iles constitute the application, it is appropriate to
download the entire asset group at the beginning. Do not always use this
install mode as it could cause a large number of network requests,
slowing down the application and creating redundant network traf�ic.
Notice the second asset group between lines 18 and 28.
a.

The asset group is named assets (line 19). These are static
resources typically including images, icons, fonts, etc.

b.

Resource �iles include all the �iles under the folder /assets. See
line 24. Notice the usage of wildcard character asterisks. It refers to
all the �iles and directories under the directory assets. Remember,
Web Arcade has six die images for each side in the assets
directory.

c.
See line 25. It instructs the app to cache all the �iles in the given list
of extensions. The list of extensions indicates the font and image
�iles.

Notice that install mode is lazy on line 20. It enables the service worker
to download the �iles only when required. Unlike the �irst asset group,
the service worker initiates the download of the �iles only when the
application requests.

Note Update mode in line 21 is used while updating a new version of
the service worker for the application. Chapter 6 details an approach
and a strategy for updating service workers.

Pattern	Match	Resources	to	Cache
In Listing 4-1, notice the resource �ile path in lines 8, 9, 22, and 23. They
follow a pattern. As you can imagine, it is not possible to list all the
resources (�iles and URLs) individually while developing the application.
The list could be dynamic. Even if they are all known, it is a tedious job to
list every single asset in a large project.

Use pattern matching to list the resources. The following are a few
syntaxes to pattern match a link to a �ile or a URL:

Use two asterisks (**) to pattern match path segments. This is typically
done to include all �iles and the child directories. In an example, the
assets directory has another child directory called icons and a list of
die images. See Figure 4-3. To include all the �iles and directories under
assets, use /assets/**.

Figure	4-3 Assets directory

To include any �ile name or any number of characters, use a single
asterisk (*). This matches zero or more characters. It does not include
child directories.
a.

In an example, assets/* includes all the �iles in the directory
assets. However, it does not include icons directory. To explicitly
include the icons directory, use assets/icons/*, which
includes all the �iles under the directory assets/icons/.

b.
In another example, imagine you need to include only the PNG �iles
in the directory icons. You may use assets/icons/*.png. This
will select all the icon �iles in Figure 4-3. If the directory has a �ile,
say icon.jpeg, it will be excluded. This is hypothetical. Notice that
lines 13 and 14 follow a similar pattern match that includes all .js
(JavaScript) and .css (CSS) �iles.

c. You can rewrite line 24 as shown in Listing 4-2.

// Comment- rewriting "/assets/**",

"files": [
 "/assets/*.png",
 "/assets/icons/*.png"
]

Listing	4-2 ngsw-con�ig.json File

This is a speci�ic instruction to include all the �iles with the extension
.png under the directories /assets and /assets/icons. The original
statement was generic, which included everything under the assets
directory.

Why write a speci�ic pattern similar to Listing 4-2, when you can
include everything under the assets directory? Remember the install
phase of a service worker. It installs either everything or nothing if the
download of a single �ile fails. Even though this does not affect the
functionality of the application, the service worker installation is
postponed until the next time the application reloads. Such situations can
occur on low-bandwidth networks. Con�iguring a generic pattern might
include unnecessary �iles, which when they fail to download can cause
problems with service worker installation. Hence, as much as you can, it is
a good practice to be speci�ic. However, if you know everything under the
assets directory needs to be cached anyway, use the generic rule and
simplify the con�iguration. More often than not, it depends on whether you
use generic or speci�ic patterns.

Note While matching patterns, it is possible that two line items match
a �ile. The service worker caches or excludes a �ile once it �inds a match.
It does not continue to look for the pattern in the next few items.

Imagine that /assets/** is on top in the array. It matches all �iles
under assets, and the speci�ic rule never runs. Hence, specify the
generic rules toward the bottom of the list; speci�ic rules should be at
the beginning in the array.

So far, you have seen the pattern to include �iles. You may use the
exclamation point (!) to pattern match excluding �iles. In an example, say

you want to exclude caching all map �iles. A map �ile contains symbols for
JavaScript code, which helps debug a mini�ied version of the �ile. It is used
in debugging and adds no value to the user to cache these �iles with a
service worker. Hence, exclude map �iles with the pattern !/**/*.map.

Notice that you are selecting map �iles with *.map and excluding them
with an exclamation point at the beginning.

Note To pattern match a single character, use ?. It is not often that we
can be so speci�ic that we know the number of characters in a �ile or
directory name. Hence, it is rarely used in ngsw-config.json.

Browser	Support
Consider Figure 4-4, which depicts the browser support for a service
worker and its features. Notice that the data is captured on the Mozilla. org
website, at https://developer.mozilla.org/en-
US/docs/Web/API/ServiceWorker. This is a reliable and open source
platform for web technologies. Mozilla has been an advocate of the open
web and has pioneered safe and free Internet technologies including the
Firefox browser.

http://mozilla.org/
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorker

Figure	4-4 Service workers browser support

Note CanIUse.com is another quality source of information for
browser compatibility. As an alternative to Mozilla, please try
https://caniuse.com/serviceworkers to learn more.

Summary
This chapter introduced service workers and the service worker lifecycle.
They are a proxy running in the background on the browser. A service
worker intercepts all the network requests from the application. Service
workers cache static and dynamic resources and programmatically use the
cached application scripts, images, data, etc. They enable an application to
function even while disconnected from the network and on slow speed
networks.

https://caniuse.com/serviceworkers

Exercise
Select and use a Google font in Web Arcade. Enable caching the font
�ile with service workers. Do not copy the font to the project. Use the
CDN location.
Imagine a production application’s releases are scheduled once a
quarter. Regardless of how often the service worker features are
updated, the icons, images, and stylesheets may change every quarter.
Expire such resources’ cache every 12 weeks.
Explore and view all the service workers installed in your favorite
browser.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2022
V. K. Kotaru, Building	Of�line	Applications	with	Angular
https://doi.org/10.1007/978-1-4842-7930-4_5

5.	Cache	Data	with	Service	Workers
Venkata Keerti Kotaru1

-, Hyderabad, Telangana, India

Service workers are used to cache data responses. So far, you have seen
how to create a new Angular application, con�igure the application to
be installable, and cache the application so that it is accessible even
when of�line. This chapter introduces how to cache a data response
from an HTTP service.

This chapter begins by creating a new component to retrieve and
show data from an HTTP service. Next, it discusses how to create an
interface that acts as a contract between the service and the Angular
application. Next, you will learn how to create a Node.js Express mock
service that provides data to the Angular application. It runs in a
separate process outside the Angular application. The chapter details
how to create an Angular service, which uses an out-of-the-box
HttpClient service to invoke the HTTP service.

Now that you have integrated with an HTTP service and accessed
the data, the chapter details how to con�igure Web Arcade to cache data
responses. It elaborates on the con�iguration and showcases a cached
data response with a simulated of�line browser.

Remember, Web Arcade is an online system for games. Imagine a
screen that lists board games available on the application, as shown in
Figure 5-1. Follow the instructions to build this component. It shows
the data in an HTML table. On loading the page, the component invokes
the service to retrieve the Web Arcade board games.

https://doi.org/10.1007/978-1-4842-7930-4_5

Figure	5-1 Board games list

Adding	a	Component	to	List	Board	Games
Begin by creating a component for listing the board games. Remember
the “Angular Components” section in Chapter 3. Create a new

component by running the following command. It will scaffold the new
component.

% ng generate component components/board-games

Earlier, you used the dice component in the App component .
Update it to use the new component, as shown in Listing 5-1. Notice the
dice component, called wade-dice , has been commented.

<div class="container align-center">
 <!-- <wade-dice></wade-dice> -->
 <wade-board-games></wade-board-games>
</div>

Listing	5-1 Use the Board Component

Note Angular single-page applications (SPAs) use routing to
navigate between two pages with separate components. Listing 5-1
is temporary so that the focus stays on data caching in this chapter.
Chapter 8 introduces Angular routing.

De�ine	a	Data	Structure	for	Board	Games
Next, de�ine a data structure for the board games page. You create a
TypeScript interface for de�ining the data structure. It de�ines a shape
for the board games data objects. TypeScript uses an interface to de�ine
a contract, which is useful within the Angular application and with the
external, remote service that serves the board games data.

The TypeScript interface enforces the required list of �ields for
board games. You will notice an error if a needed �ield is missing
because of a problem in the remote service or a bug in the Angular
application. An interface acts as a contract between the Angular
application and the external HTTP service.

Run the following command to create the interface. It creates a new
�ile called board-games-entity.ts in a new directory called
common. Typically, data structures/entities are used across the Angular
application. Hence, name the directory common.

ng generate interface common/board-games-entity

Listing 5-2 de�ines the speci�ic �ields for board games. The remote
service is expected to return the same �ields. The component uses this
shape and structure for the data. Add the code to board-games-
entity.ts.

export interface BoardGamesEntity {
 title: string;
 description: string;
 age: string;
 players: string;
 origin: string;
 link: string;
 alternateNames: string;
}

/* Multiple games data returned, hence creating an
Array */
export interface GamesEntity {
 boardGames: Array<BoardGamesEntity>;
}

Listing	5-2 Interfaces for Board Games

BoardGamesEntity represents a single board game. Considering
Web Arcade will have multiple games, GamesEntity includes an array
of board games. Later, GamesEntity can extend to other categories of
games in the Web Arcade system.

Mock	Data	Service
A typical service retrieves and updates data from/to a database or a
back-end system, which is out of scope for this book. However, to
integrate with a RESTful data service, this section details how to
develop mock responses and data objects. The mock service returns
board games data in JavaScript Object Notation (JSON) format. It can be

readily integrated with the Angular component created in the earlier
section “Adding a Component to List Board Games.”

You will use Node.js’s Express server to develop the mock service.
Follow these instructions to create a new service.

Use the Express application generator to easily generate a Node.js
Express service. Run the following command to install it:

npm install --save-dev express-generator

(or)

yarn add --dev express-generator

Note Notice the --save-dev option with the npm command and
the --dev option with the yarn command. It installs the package in
dev-dependencies in package.json, qualifying it as a
developer tool. It will not be included in the production builds,
which helps reduce the footprint. See Listing 5-3, line 15.

01: {
02: "name": "web-arcade",
03: "version": "0.0.0", /* removed code for
brevity */
04: "dependencies": {
05: "@angular/animations": "~12.0.1",
06: /* removed code for brevity */
07: "zone.js": "~0.11.4"
08: },
09: "devDependencies": {
10: "@angular-devkit/build-angular": "~12.0.1",
11: "@angular/cli": "~12.0.1",
12: "@angular/compiler-cli": "~12.0.1",
13: "@types/jasmine": "~3.6.0",
14: "@types/node": "^12.11.1",
15: "express-generator": "^4.16.1",
16: "jasmine-core": "~3.7.0",

17: "karma": "~6.3.0",
18: "karma-chrome-launcher": "~3.1.0",
19: "karma-coverage": "~2.0.3",
20: "karma-jasmine": "~4.0.0",
21: "karma-jasmine-html-reporter": "^1.5.0",
22: "typescript": "~4.2.3"
23: }
24: }

Listing	5-3 Package.json dev-dependencies

Next, create a new directory for mock services; name it mock-
services (an arbitrary name). Change the directory to mock-
services. Run the following command to create a new Express
service. It scaffolds a new Node.js Express application.

npx express-generator

Note The npx command �irst checks the local node_modules for
the package. If it is not found, the command downloads the package
to the local cache and run the command.

The previous command runs, even without the dev-
dependency installation in the previous step (npm install --
save-dev express-generator). If you do not intend to run
this command often, you may skip the dev-dependency
installation.

Next, run npm install (or yarn install) in the mock-
services directory.

Create and save board games data in a JSON �ile. The code sample
saves it to [application-directory]/mock-
services/data/board-games.json. The server-side Node.js
service returns these �ields and values to the Angular application. The
structure matches the Angular interface structure de�ined in Listing 5-
2. See Listing 5-4.

{

 "boardGames": [
 {
 "title": "Scrabble",
 "description": "A crossword game
commonly played with English alphabets and words",
 "age": "5+",
 "players": "2 to 5",
 "origin": "Started by an architect
named Alfred Mosher Butts in the year 1938",
 "link":
"https://simple.wikipedia.org/wiki/Scrabble",
 "alternateNames": "Scrabulous (a
version of the game on Facebook)"
 },

 {
 "title": "Checkers",
 "description": "Two players start with
dark and light colored pieces. The pieces move
diagonally.",
 "age": "3+",
 "players": "Two players",
 "origin": "12th century France",
 "link":
"https://simple.wikipedia.org/wiki/Checkers",
 "alternateNames": "Draughts"
 }

/* You may extend additional mock games data*/
]
}

Listing	5-4 Board Games Mock Data

Next, update the mock service application to return the previous
board games data. Create a new �ile called board-games.js under
mock-services/routes. Add the code in Listing 5-5.

01: var express = require('express'); // import
express
02: var router = express.Router(); // create a
route
03: var boardGames = require('../data/board-
games.json');
04:
05: /* GET board games listing. */
06: router.get('/', function(req, res, next) {
07: res.setHeader('Content-Type',
'application/json');
08: res.send(boardGames);
09: });
10:
11: module.exports = router;

Listing	5-5 New API Endpoint That Returns Mock Board Games Data

Consider the following explanation:
Line 3 imports and sets the board games mock data on a variable.
Lines 6 to 9 create the endpoint that returns the board games data.
Notice the get() function in line 6. The endpoint responds to an
HTTP GET call, which is typically used to retrieve data (as opposed to
create, update, or delete).
Line 7 sets the response content type to application/json
ensuring the client browsers interpret the response format
accurately.
Line 8 responds to the client with the board games data.
Line 11 exports a router instance that encapsulates the service
endpoint.

Next, the endpoint needs to be associated with a route so that the
previous code is invoked when the client requests data. Edit app.js in
the root directory of the service application (mock-
services/app.js). Add the lines of code in bold (lines 9 and 25) in
Listing 5-6 to the �ile.

07: var indexRouter = require('./routes/index');

08: var usersRouter = require('./routes/users');
09: var boardGames = require('./routes/board-
games');
10:
11: var app = express();
12:
13: // view engine setup
14: app.set('views', path.join(__dirname,
'views'));
15: app.set('view engine', 'jade');
16:
17: app.use(logger('dev'));
18: app.use(express.json());
19: app.use(express.urlencoded({ extended: false
}));
20: app.use(cookieParser());
21: app.use(express.static(path.join(__dirname,
'public')));
22:
23: app.use('/', indexRouter);
24: app.use('/users', usersRouter);
25: app.use('/api/board-games', boardGames);

Listing	5-6 Integrate the New Board Games Endpoint

Consider the following explanation:
Line 9 imports the board games route instance exported in the
earlier Listing 5-5.
Line 25 adds the route /api/board-games to the application. The
new service is invoked when the client invokes this endpoint.

Run the mock service with the command npm start. By default, it
runs the Node.js Express service application on port 3000. Access the
new endpoint by accessing
http://localhost:3000/api/board-games. See Figure 5-2.

Figure	5-2 Board games endpoint accessed on a browser

Note Notice that you are running the service application on a
separate port, which is 3000. Remember, in the earlier examples, the
Angular application runs on ports 8080 (with Http-Server) and 4200
(with the ng serve command that uses Webpack internally). The
Angular application running on one of these ports is expected to
connect to the service instance running on port 3000.

Call	the	Service	in	the	Angular	Application
This section details how to update the Angular application to consume
data from the Node.js service. In a typical application, Node.js services
are server-side, remote services that access data from a database or
another service.

Con�igure	the	Service	in	an	Angular	Application
Angular provides an easy way to con�igure various values including
remote service URLs. In the Angular project, notice the directory
src/environment. By default, you will see the following:

environment.ts: This is for the debug build con�iguration used by
the developer on localhost. Typically, the ng serve command uses
it.

environment.prod.ts: This is for production deployments.
Running ng build (or yarn build or npm run build) uses
this con�iguration �ile.

Edit the �ile src/environments/environment.ts and add the
code in Listing 5-7. It has a relative path to the service endpoint.

1: export const environment = {
2: boardGameServiceUrl: `/api/board-games`,
3: production: false,
4: };
5:

Listing	5-7 Integrate the New Board Games Endpoint

Consider the following explanation:
Line 2 adds a relative path to the service endpoint. You will import
and use the con�iguration �ield boardGameServiceUrl while
making a call to the service.
Line 3 set production to false. Remember, the �ile
environment.ts is used with the ng serve command, which
runs a debug build with the help of Webpack. It is set to true in the
alternate environment �ile environment.prod.ts.

Create	an	Angular	Service
Angular services are reusable units of code. Angular provides ways to
create a service and instantiate and inject services into components
and other services. The Angular services help separate concerns.
Angular components primarily focus on the presentation logic. On the
other hand, you may use services for other reusable functions that do
not include presentation. Consider the following examples:

A service can be used for sharing data among components. Imagine a
screen with a list of users. Say the list is shown by a UserList
component. Users can select a user. The application navigates to
another screen, which loads another component, say UserDetails.
The user details component shows additional information about the
user in your system. The user details component needs data about

the selected user so that it can retrieve and show the additional
information.

You may use a service to share the selected user information. The
�irst component updates the selected user details to a common service.
The second component retrieves the data from the same service.

Note A service is an easy and a simple way to share data among
components. However, for a large application, it is advisable to adapt
the Redux pattern. It helps maintain application state, ensures
unidirectional data �lows, provides selectors for easy access to the
state in the Redux store, and has many more features. For Angular,
NgRx is a popular library that implements the Redux pattern and its
concepts.

How are the components sharing the same instance of a service? See
the next section for details of how an Angular service is provided and
how the service instances are managed in an Angular application.

A service can be used to aggregate and transform JSON data. The
Angular application might obtain data from various data sources.
Create a service with a reusable function to aggregate and return the
data. This enables a component to readily use the JSON objects for
the presentation.
A service is used to retrieve data from a remote HTTP service. In this
chapter, you have already built a service to share the board games
data with an Angular application. The Node.js Express server running
in a separate process (ideally on a remote server) shares this data
over an HTTP GET call.

Create a new service by running the following Angular CLI
command. You will use this service to invoke the api/board-games
service built in the previous section.

ng generate service common/games

The CLI command creates a new games service. It creates the
following �iles in the directory common:

common/games.services.ts: A TypeScript �ile for adding
Angular service code that makes HTTP calls for games data
common/games.services.spec.ts: A unit test �ile for the
functions in games.service.ts

Consider Listing 5-8 for the games service. Add a new function
called getBoardNames() to invoke the HTTP service.

01: @Injectable({
02: providedIn: 'root'
03: })
04: export class GamesService {
05:
06: constructor() { }
07:
08: getBoardGames(){
09: }
10: }

Listing	5-8 Angular Service Skeleton Code

Provide	a	Service
Notice the code statement in lines 1 to 3. Those lines contain the
Injectable decorator, with provideIn at the root level. Angular
shares a single instance for the entire application. The following are the
alternatives:

Provide	at	the	module	level: The service instance is available and
shared within the module. Later sections give more details about
Angular modules.
Provide	at	the	component	level: The service instance is created and
available for the component and all its child components.

Once a service is provided, it needs to be injected. A service can be
injected into a component or another service. In the current example,
the board games component needs data so that the games are listed for
users to view. Notice in the earlier Listing 5-8 that the code creates a
new function called getBoardGames() intended to retrieve the list
from the remote HTTP service.

Inject GamesService into BoardGamesComponent, as shown in
Listing 5-9, line 5. The constructor creates a new �ield called
gameService of type GamesService. This statement injects the
service into the component.

01: export class BoardGamesComponent implements
OnInit {
02:
03: games = new Observable<GamesEntity>();
04:
05: constructor(private gameService:
GamesService) { }
06:
07: ngOnInit(): void {
08: this.games =
this.gameService.getBoardGames();
09: }
10:
11: }

Listing	5-9 Inject Games Service into a Component

Note The ngOnInit() function on line 7 is an Angular lifecycle
hook. It is invoked after the framework completes initializing the
component and its properties. This function is a good place in a
component for additional initializations, including service calls.

Line 8 in Listing 5-9 calls the service function that retrieves
board games data. This data is required as part of component
initialization as the primary functionality of the component is to
show a list of games.

HttpClient	Service
Next, invoke the remote HTTP service . Angular provides the
HttpClient service as part of the package
@angular/common/http. It provides an API to invoke various HTTP
methods including GET, POST, PUT, and DELETE.

As a prerequisite, import HttpClientModule from
@angular/common/http. Add it (HttpClientModule) to the
imports list on the Angular module, as shown in Listing 5-10, lines 7
and 13.

01: import {HttpClientModule} from
'@angular/common/http';
02:
03: @NgModule({
04: declarations: [
05: // pre-existing declaratoins
06:],
07: imports: [
08: // pre-existing imports
09: BrowserModule,
10: HttpClientModule,
11: AppRoutingModule,
12:
13:],
14: providers: [],
15: bootstrap: [AppComponent]
16: })
17: export class AppModule { }
18:

Listing	5-10 Import HttpClientModule

Remember from Listing 5-5 (line 6) that the service returns data to
the Angular application with a GET call. Hence, we will use the get()
function on the HttpClient instance to invoke the service.
Remember, we already created the function getBoardGames() as
part of GamesService (see Listing 5-8, line 8).

Next, inject the HttpClient service into GamesService and use
the get() API to make an HTTP call. See Listing 5-11 .

01: import { Injectable } from '@angular/core';

02: import { HttpClient } from
'@angular/common/http';
03: import { environment } from
'src/environments/environment';
04: import { GamesEntity } from './board-games-
entity';
05: import { Observable } from 'rxjs';
06:
07:
08: @Injectable({
09: providedIn: 'root'
10: })
11: export class GamesService {
12:
13: constructor(private client: HttpClient) { }
14:
15: getBoardGames(): Observable<GamesEntity>{
16: return this
17: .client
18: .get<GamesEntity>
(environment.boardGameServiceUrl);
19: }
20: }
21:

Listing	5-11 GamesService Injects and Uses HttpClient

Consider the following explanation:
Line 13 injects HttpClient into GamesService. Notice that the
name of the �ield (an instance of HttpClient) is client. It is a
private �ield and hence accessible only within the service class.
The statement in lines 16 to 18 invokes the client.get() API. As
a client is a �ield of the class, it is accessed using the this keyword.
The get() function accepts one parameter, the URL for the service.
Notice the import statement for the environment object on line 3. It
imports the object exported from the environment con�iguration �ile.
See Listing 5-7. It is one of the environment con�iguration �iles. Use

the boardGameServiceUrl �ield from the con�iguration (Listing
5-11, line 18). You may have more than one URL con�igured in an
environment �ile.
Notice that the get() function is expected to retrieve
GamesEntity. It was created in Listing 5-2.
The getBoardGames() function returns an
Observable<GamesEntity>. Observable is useful with
asynchronous function calls. A remote service might take some time,
such as a few milliseconds or sometimes a few seconds, to return the
data. Hence, the service function returns an observable. The
subscriber provides a function callback. The observable executes the
function callback once data is available.
Notice that line 16 returns the output of the get() function call. It
returns an Observable of the type speci�ied. You speci�ied the type
GamesEntity on line 18. Hence, it returns an Observable of type
GamesEntity. It matches with the return type of
getBoardGames() on line 15.

Now, the service function is ready. Review Listing 5-9 again, which is
a component TypeScript class. It calls the service function and sets the
return value of type Observable<GamesEntity> to a class �ield.
The class �ield uses the returned object in the HTML template. The
template �ile renders the board games list on a page. See Listing 5-12.

01: <div>
02: <table>
03: <tr>
04: <th> Title </th>
05: <th> History </th>
06: </tr>
07: <ng-container *ngFor="let game of
(games | async)?.boardGames">
08: <tr>
09: <td>
10:
11: {{game.title}}
12:

13:
{{game.alternateNames}}
14: </td>
15: <td>{{game.origin}}</td>
16: </tr>
17: <tr >
18: <td class="last-cell"
colspan="2">{{game.description}}</td>
19: </tr>
20: </ng-container>
21:
22: </table>
23: </div>

Listing	5-12 Board Games Component Template Shows List of Games

Consider the following explanation:
The template renders the list as an HTML table.
Notice, in line 7, that the *ngFor directive iterates through
boardGames. See Listing 5-2. Notice that boardGames is an array
on the interface GamesEntity.
The template shows �ields on each game in the entity. See lines 11,
13, 15, and 18. They show the �ields title, alternateNames,
origin, and description.
Remember, the class �ield games is set with the values returned from
the service. This �ield is used in the template. See line 7.
Notice the pipe with async (| async) on line 7. It is applied on
Observable. Remember, the service returns an Observable. As
mentioned earlier, an Observable is useful with asynchronous
function calls. A remote service might take time, a few milliseconds
or sometimes a few seconds, to return the data. The template uses
the �ield boardGames on games Observable, when the data is
available, in other words, when it is obtained from the service.

Cache	the	Board	Games	Data

So far, we have created an HTTP service to provide board games data,
created an Angular service to use the HTTP service to obtain the data,
and added a new component to show the list. Now, con�igure the
service worker to cache the board games data (and even other HTTP
service responses).

Remember, in the previous chapter, we listed various con�igurations
for Angular service workers. As you have seen, Angular uses a �ile called
ngsw-config.json for service worker con�igurations. In this
section, you will add a dataGroups section to cache the HTTP service
data. See Listing 5-13 for the new con�iguration to cache the board
games data.

01: "dataGroups": [{
02: "name": "data",
03: "urls": [
04: "api/board-games"
05:],
06: "cacheConfig": {
07: "maxAge": "36h",
08: "timeout": "10s",
09: "maxSize": 100,
10: "strategy":"performance"
11: }
12: }]

Listing	5-13 Data Groups Con�iguration for a Service Worker in an Angular
Application

Consider the following explanation:
Line 4 con�igures the service URLs to cache data. It is an array, and
we can con�igure multiple URLs here.
The URLs support matching patterns. For example, you may use
api/* to con�igure all the URLs.
As part of the cache con�iguration (cacheConfig), see line 10. Set
strategy to performance. This instructs the service worker to
use cached responses �irst for better performance. Alternatively, you

may use freshness, which goes to the network �irst and uses the
cache only when the application is of�line.
Notice that maxAge is set to 36 hours, after which the service worker
clears the cached responses (of board games). Caching data for too
long could cause the application to use obsolete �ields and records.
The service worker con�iguration provides a mechanism to
automatically clear the data at periodic intervals, ensuring the
application does not use stale data.
The timeout is set to 10 seconds. This is dependent on strategy.
Assuming strategy is set to freshness, after 10 seconds, the
service worker uses cached responses.
maxSize is set to 100 records. It is a good practice to limit the size
by design. Browsers (like any other platform) manage and allocate
memory for each application. If the application exceeds the upper
limit, the entire dataset and the cache could be evicted.

Listing 5-13 has a single data groups con�iguration object. As we
further develop the application, the additional services might have
slightly different cache requirements. For example, the list of gamers
might need to be the latest ones. If your friend joins the arcade, you
prefer to see her listed instead of showing the old list. Hence, you might
change the strategy to freshness. Add this URL con�iguration as
another object in the dataGroups array. On the other hand, for a
service that �its the current con�iguration, add the URL to the urls
�ield on line 4.

Run the Angular build and start Http-Server to see the changes. See
the following command:

yarn build && http-server dist/web-arcade --proxy
http://localhost:3000

See Figure 5-3 for cached service response with a service worker.

Figure	5-3 Cached service responses with the service worker

Angular	Modules
Traditionally, Angular had its own modularity system. The new
framework (Angular 2 and greater) uses NgModules to bring
modularity to applications. An Angular module encapsulates directives
including components, services, pipes, etc. Create Angular modules to
logically group features. See Figure 5-4.

Figure	5-4 Angular modules

All Angular applications use at least one root module. Typically, the
module is named AppModule and de�ined in
src/app/app.module.ts. A module may export one or more
functionalities. The other modules in the application can import the
exported components and services.

Note Angular modules are separate from JavaScript (ES6)
modules. They complement each other. An Angular application uses
both JavaScript modules and Angular modules.

Summary
This chapter provided instructions for creating a new component for
listing board games. With this code sample, it demonstrated how
service workers cache data responses from an HTTP service. It
provided instructions to create a board games component with Angular

CLI. You also updated the application to use this new component
instead of dice.

It also de�ined data contracts between the Angular application and
the external HTTP service, detailed how to create a Node.js Express
service for providing data to the Angular application, and introduced
Angular services.

Exercise
Create a new route in the Node.js Express application for exposing
a list of jigsaw puzzles.
Create an Angular service to use the new jigsaw puzzles service
endpoint and retrieve data.
Ensure the latest jigsaw puzzles data is available to the user. Cache
only when the user is of�line or lost connectivity.
For the new service, con�igure to use data from the cache if the
service does not respond after one minute.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2022
V. K. Kotaru, Building	Of�line	Applications	with	Angular
https://doi.org/10.1007/978-1-4842-7930-4_6

6.	Upgrading	Applications
Venkata Keerti Kotaru1

-, Hyderabad, Telangana, India

So far you have created an Angular application, registered service
workers, and cached application resources. This chapter details how to
discover an update to the application, communicate with users, and
handle events to gracefully upgrade to the next version.

The chapter extensively uses Angular’s SwUpdate service, which
provides ready-made features to identify and upgrade the application.
It begins with instructions to include (import and inject) the
SwUpdate service . Next, it details how to identify an available upgrade
and activate the upgrade. It also details how to check at regular
intervals for an upgrade. Toward the end, the chapter details how to
handle an edge case, namely, an error scenario when browsers clean up
unused scripts.

Considering the Web Arcade application is installable, you need a
mechanism to look for updates, notify the user about new versions of
the application, and perform an upgrade. A service worker manages
installing and caching the Angular application. This chapter details
working with SwUpdate, an out-of-the-box service provided by
Angular to ease service worker communication. It gives access to
events when a new version of the application is available, downloaded,
and activated. You may use the functions in this service to do periodic
checks for updates.

Getting	Started	with	SwUpdate

https://doi.org/10.1007/978-1-4842-7930-4_6

This section shows you how to get started with the SwUpdate service
by importing and injecting the service. The SwUpdate service is part of
the Angular module ServiceWorkerModule, which was referenced
in the import list of AppModule already. Verify the code in the sample
application in the app.module.ts �ile. It was included when you ran
the Angular CLI ng add @angular/pwa command in Chapter 2.
Consider Listing 6-1, lines 15 and 22.

01: import { NgModule } from '@angular/core';
02: import { BrowserModule } from
'@angular/platform-browser';
03: import { environment } from
'../environments/environment';
04: import { ServiceWorkerModule } from
'@angular/service-worker';
05: import { BrowserAnimationsModule } from
'@angular/platform-browser/animations';
06:
07: import { AppComponent } from
'./app.component';
08:
09: @NgModule({
10: declarations: [
11: AppComponent,
12:],
13: imports: [
14: BrowserModule,
15: ServiceWorkerModule.register('ngsw-
worker.js', {
16: enabled: environment.production,
17: // Register the ServiceWorker as soon as
the app is stable
18: // or after 30 seconds (whichever comes
first).
19: registrationStrategy:
'registerWhenStable:30000'
20: }),

21: BrowserAnimationsModule
22:],
23: providers: [],
24: bootstrap: [AppComponent]
25: })
26: export class AppModule { }
27:

Listing	6-1 ServiceWorkerModule Imported in AppModule

Ensure ServiceWorkerModule is imported as shown (in bold).
This enables the SwUpdate service to be readily usable. Create a new
Angular service to encapsulate the code for identifying a new version of
the service worker, communicating with the user, and managing the
details. This helps with code reusability and separation of concerns. To
install the service, run the following command:

ng g s common/sw-communication

Note In the snippet, g is short for “generate,” and s is for “service.”
You can rewrite the previous command as ng generate

service common/sw-communication.

The Angular CLI command creates a new service called
SwCommunicationService in the directory common. By default it is
provided at the root level. Import and inject the SwUpdate service into
SwCommunicationService, as shown in Listing 6-2.

01: import { Injectable } from '@angular/core';
02: import { SwUpdate } from '@angular/service-
worker';
03:
04: @Injectable({
05: providedIn: 'root'
06: })
07: export class SwCommunicationService {
08: constructor(private updateSvc: SwUpdate)

09: }
10: }

Listing	6-2 Scaffolded SwCommunicationService

Lines 2 and 8 import and inject the SwUpdate Angular service. Line
5 provides the service at the root level. Although the service is provided
at the root level, it is not yet used in the application. Unlike other
services created in Web Arcade, it needs to run in the background,
when you launch the application or at regular intervals. Hence, import
and inject swCommunicationService in the root component, the
AppComponent, as shown in Listing 6-3, lines 2 and 9.

01: import { Component } from '@angular/core';
02: import { SwCommunicationService } from
'src/app/common/sw-communication.service';
03: @Component({
04: selector: 'app-root',
05: templateUrl: './app.component.html',
06: styleUrls: ['./app.component.sass']
07: })
08: export class AppComponent {
09: constructor(private commSvc:
SwCommunicationService){
10: }
11: }

Listing	6-3 Import and Inject SwCommunicationService in AppComponent

Identifying	an	Update	to	the	Application
Next, update SwCommunicationService to identify if an updated
version of the application is available. The SwUpdate service provides
an observable named available. Subscribe to this observable. It is
invoked when the service worker identi�ies an updated version of the
application.

Note At this point, you have the information that an upgrade is
available on the server. You have not downloaded and activated it
yet.

Consider Listing 6-4.

1: export class SwCommunicationService {
2: constructor(private updateSvc: SwUpdate
3:){
4: this.updateSvc.available.subscribe(i => {
5: console.log('A new version of the
application available', i.current, i.available);
6: });
7: }
8: }

Listing	6-4 Identify a New Version of the Application

Consider the following explanation:
See line 4 for how to use the object available on updateSvc (an
object of SwUpdate). It is an observable, which sends values when a
new version of the application is available.
Line 5 prints current and available objects. Consider the result
in Figure 6-1. Notice the version number in the message.

Figure	6-1 Result on the available observable

Note Listing 6-4 does not initiate a check for a new version. The
subscribe callback (line 5) runs when a new version is identi�ied. See
the section “Checking for a New Version” to initiate a check for a new
version at regular intervals.

Also, the new version is not downloaded and activated yet.

Remember the appData �ield in ngsw-config.json for the
application. (Refer to Chapter 4.) The objects current and
available include data from appData. In the sample application,
we added a single �ield name that describes changes to the
application. The result in Figure 6-1 prints the current and
available objects. They are the �ields from ngsw-config.json
in the current and new versions of the application. See Listing 6-5 for
ngsw-config.json.

01: {
02: "appData": {"name": "New games available and
few bug fixes"},
03: "$schema": "./node_modules/@angular/service-
worker/config/schema.json",
04: "index": "/index.html",
05: "assetGroups": [
06: {
07: // Removed code for brevity. See code
sample for the complete file.
42: }]
43: }

Listing	6-5 ngsw-con�ig.json with appData

As mentioned earlier, the available observer veri�ies if a new
version of the service worker is ready and available. It does not mean it
is in use yet. You may prompt the user to update the application. This
gives the user a chance to complete the current work�low. For example,

in Web Arcade, you do not want to reload and upgrade to a new version
while the user is playing a game.

Identifying	When	an	Update	Is	Activated
So far, you have identi�ied if an upgrade is available. This step allows
you to identify an activated upgrade. The activated observable is
triggered once a service worker starts serving content from the new
version of the application.

Consider Listing 6-6 in SwCommunicationService that uses the
activated observable .

01: export class SwCommunicationService {
02:
03: constructor(private updateSvc: SwUpdate) {
04: this.updateSvc
05: .available
06: .subscribe(i => {
07: console.log('A new version of the
application available', i.current, i.available);
08: });

09: this.updateSvc
10: .activated
11: .subscribe(i =>
12: console.log('A new version of the
application activated', i.current, i.previous));
13: }
14:
15: }

Listing	6-6 Activated Observable on SwUpdate

See lines 9 to 13. Notice that you subscribe to the activated
observable. It is triggered on activating a new version of the
application. See the console.log on line 12. This prints current
and previous. It is similar to the current and available objects
on the available observable (see Listing 6-4), which is before

activation. As the activated observable is triggered after activation, the
available version is now the current version. See the result in Figure 6-
2.

Figure	6-2 Result on the activated observable

Note Similar to the available observable, the current and
previous objects include appData from ngsw-config.json
for the respective versions of the application.

Activating	with	the	SwUpdate	Service
When the user opens the application in a new window, service workers
check if a new version is available. The service worker might still load
the application from the cache. This is because the new version may not
have been downloaded and activated yet. It triggers the available
event. The subscribe callback on the available observable will be
invoked (similar to Listing 6-4). Typically, the next time a user attempts
to open the application in a new window, a newer version of the service
worker and the application are served. The precise behavior depends
on the con�iguration and a few other factors.

However, you may choose to activate the newer version as soon as
you know a newer version is available. The SwUpdate service provides
the activateUpdate() API to activate new versions of the

application. The function returns a promise<void>. The success
callback of the promise is invoked after activating the update. Consider
Listing 6-7, which activates the update.

Note This section does not prompt the user to choose to update
the new version yet. As you progress to the next section, you will add
the code to alert the user about the availability of a new version of
the application.

01: export class SwCommunicationService {
02:
03: constructor(private updateSvc: SwUpdate) {
04: this.updateSvc
05: .available
06: .subscribe(i => {
07: console.log('A new version of the
application available', i.current, i.available);
08: this.updateSvc
09: .activateUpdate()
10: .then(() => {
11: console.log("activate
update is successful");
12: window.location.reload();
13: });
14: });
15:
16: this.updateSvc
17: .activated
18: .subscribe(i => console.log('A new
version of the application activated', i.current,
i.previous));
19: }
20: }

Listing	6-7 Activate Update with the SwUpdate Service

See lines 8 and 13. The activateUpdate() function is called in
line 9. It returns a promise. The then() function is called on the
returned promise. You provide a callback that is invoked after the
promise is resolved. See line 11, which prints a message that the
“activate update is successful.”

Notice that activateUpdate() is called when an update is
available. The activateUpdate() method is called within the
available observable subscription. See lines 6 and 14. This is a
subscription callback for the available observable.

Line 12 reloads the application (the browser window) after the
update has been activated. It is a good practice to reload the browser on
a successful update. In a few instances, routing with lazy loading may
break if the window does not reload after the service worker and the
cache are refreshed.

Checking	for	a	New	Version
The SwUpdates service can check for a new version of the application
(service worker con�iguration) on the server. As mentioned earlier, so
far you have received events if a new version was available or activated.
You activated the new version if it was available. However, we are
dependent on the browser and service worker built-in mechanisms to
look for updates.

The function checkForUpdates() can be called on the instance
of SwUpdate to look for updates on the server. It will trigger the
available observable if a new version is available. The function is
especially useful if you anticipate users keeping the application open
for a long duration, sometimes days. It is also possible that you
anticipate frequent updates and deployments to the application. You
may set an interval and regularly check for updates.

Considering checkForUpdates() is used with an interval, it is
important you ensure the Angular application is fully bootstrapped and
stable before checking for an update. Using this function too often may
not allow the Angular application to be stable. Hence, it is a good
practice to check if the application is stable and use

checkForUpdates, as shown in Listing 6-8. It is added to the
SwCommunicationService.

01: import { SwUpdate } from '@angular/service-
worker';
02: import { ApplicationRef, Injectable } from
'@angular/core';
03: import { first} from 'rxjs/operators';
04: import { interval, concat } from 'rxjs';
05:
06: @Injectable({
07: providedIn: 'root'
08: })
09: export class SwCommunicationService {
10:
11: constructor(private updateSvc: SwUpdate,
12: private appRef: ApplicationRef) {
13:
14: let isApplicationStable$ =
this.appRef.isStable.pipe(first(isStable =>
isStable === true));
15: let isReadyForVersionUpgrade$ = concat(
isApplicationStable$, interval (12 * 60 * 60 *
1000)); // //twelve hours in milliseconds
16: isReadyForVersionUpgrade$.subscribe(() =>
{
17: console.log("checking for version
upgrade...")
18: this.updateSvc.checkForUpdate();
19: });
20: }
21: }
22:

Listing	6-8 Invoking CheckForUpdates at Regular Intervals

Consider the following explanation:

You inject ApplicationRef to verify if the Angular app is stable.
Lines 2 and 12 import and inject the class, respectively.
Line 13 veri�ies if the application is stable. The �ield isStable is of
type Observable<boolean>. When subscribed, it returns true
when the application is stable. Line 14 assigns the observable to the
local variable isApplicationStable$.
In line 15, the interval() function returns an
Observable<number>. The function accepts a time duration in
milliseconds as a parameter. The subscribe callback is invoked after
the speci�ied time interval. Notice that the code snippet speci�ies 12
hours in milliseconds.
Line 15 concats isApplicationStable$ with the observable
returned by interval(). The resultant observable is set to
isReadyForVersionUpgrade$. Subscribe to this observable. The
success callback is invoked when the application is stable and the
speci�ied interval (12 hours) has passed.

Note The concat function has now been deprecated. If you are on
RxJS version 8, use the concatWith() function to concatenate
observables.

In line 18, in the subscribe callback for the observable
isReadyForVersionUpgrade$, you check for updates using the
SwUpdate instance.
As a quick recap, you check for upgrades every 12 hours when the
application is stable. The checkForUpdate() function may trigger
the available subscriber, which calls activateUpdate() that
triggers the activate subscriber after successfully activating the
new version of the application.

Notifying	the	User	About	the	New	Version
Notice that the current code reloads the application when a new
version of the service worker is identi�ied. It does not yet alert the user
and allow her to choose when to reload. To provide this option,

integrate the application with a Snackbar component. This is a ready-
made component available in the Angular Material library. Angular
Material provides Material Design implementations for Angular
applications.

Why did we choose the Snackbar component? A typical alert blocks
the user work�low. Users cannot continue to use the application until an
action is taken on the alert. Such a paradigm works well when a
work�low cannot continue without the user’s decision. For example, it
could be an error scenario, which is important for a user to
acknowledge and then make a correction.

On the other hand, when a new version of the service worker (and
the application) is available, you do not want to disrupt the current
user session. Users may continue to use the current version until the
task at hand is complete. For example, if the user is playing a game on
Web Arcade, continue until the game is complete. When the user deems
it appropriate to reload the window, she may choose to respond to the
alert.

A Snackbar component �its well with our scenario. It shows the alert
in a corner of the application without interfering with the rest of the
page. By default, the alert is shown at the bottom of the page, toward
the center. See Figure 6-3. As mentioned earlier, you should allow users
to click the button on the Snackbar component to install the new
version of the application.

Figure	6-3 A Snackbar component alerting the user that a new version of the
application is available

To install the Snackbar component, add Angular Material to the Web
Arcade application. Run the following command:

ng add @angular/material

Angular Material is a UI component with other components and
stylesheets conforming to Google’s Material Design. To begin with, the
CLI prompts you to select a theme. See Figure 6-4.

Figure	6-4 Selecting an Angular Material theme

Next, the CLI does the following:
1.

Prompts you to choose Angular Material typography. This is a
decision about using Angular Material fonts, default font sizes, etc.

2.

Prompts you to include browser animations interacting with
Angular Material components. Animations provide visual feedback
for user actions such as animating the click a button, transitioning a
tab of content, etc.

See Listing 6-9 for the result.

✔ Package successfully installed.
? Choose a prebuilt theme name, or "custom" for a
custom theme: Indigo/Pink [Preview:
https://material.angular.io?theme=indigo-pink]
? Set up global Angular Material typography
styles? Yes
? Set up browser animations for Angular Material?
Yes
UPDATE package.json (1403 bytes)
✔ Packages installed successfully.
UPDATE src/app/app.module.ts (1171 bytes)
UPDATE angular.json (3636 bytes)
UPDATE src/index.html (759 bytes)
UPDATE node_modules/@angular/material/prebuilt-
themes/indigo-pink.css (77575 bytes)

Listing	6-9 Result Installing Angular Material

Adding Angular Material to the Web Arcade allows you to use
various Angular Material components. You will import and use only the

required components. The entire component library does not add to
the bundle size.

To use the Snackbar component, import MatSnackBarModule to
the AppModule in Web Arcade. Consider Listing 6-10.

01: import { MatSnackBarModule } from
'@angular/material/snack-bar';
02:
03: @NgModule({
04: declarations: [
05: AppComponent,
06: // You may have more components
07:],
08: imports: [
09: BrowserModule,
10: AppRoutingModule,
11: MatSnackBarModule,
12: // You may have additional modules
imported
13:],
14: providers: [],
15: bootstrap: [AppComponent]
16: })
17: export class AppModule { }

Listing	6-10 Add the Snackbar Module to the Web Arcade Application

See the �irst line, which imports MatSnackBarModule from the
Angular Material module for the Snackbar component. Also see line 11
that imports the module to the AppModule on Web Arcade.

Next, import and inject the Snackbar component to the
SwCommunication service. Remember, you show an alert to the user
when a new version of the application is available. It is identi�ied in the
constructor of the SwCommunication service . See Listing 6-11.

01: import { Injectable } from '@angular/core';
02: import { SwUpdate } from '@angular/service-
worker';

03: import { MatSnackBar } from
'@angular/material/snack-bar';
04:
05: @Injectable({
06: providedIn: 'root'
07: })
08: export class SwCommunicationService {
10: constructor(private updateSvc: SwUpdate,
11: private snackbar: MatSnackBar) {
13: this.updateSvc.available.subscribe(i => {
14: let message = i?.available?.appData as {
"name": string };
15: console.log('A new version of the
application available', i.current, i.available);
16: let snackRef = this.snackbar
17: .open(`A new version of the app
available. ${message.name}. Click to install the
application`, "Install new version");
18: });
19: }
20: }

Listing	6-11 Alert with a Snackbar that a new version of the application is
available

Consider the following explanation:
Line 3 imports the Snackbar component from Angular Material’s
snackbar module. It is injected into the service on line 11.
Notice the success callback between lines 14 and 18. It is on the
available observable. As mentioned earlier, when an update is
ready, this observer function is triggered.
See line 16. The open() function shows a Snackbar component. You
provide two parameters, the message to show on the alert (Snackbar
component) and the title for the action (or the button) on the
Snackbar component. Revisit Figure 6-3 to match the code to the
result.

Notice the open function returns a Snackbar reference object as well.
You are using this object to perform an action when the user clicks
the button on the Snackbar component.
Notice message.name is interpolated on line 17. The message
object is obtained on the prior line 14. Notice it is the appData
object on ngsw-config.json. This is one way to provide a
friendly message for each version upgrade of the application and
show the information to the user while she chooses to reload and
install the new version. See Figure 6-3. The message from appData
says, “we added more games to the arcade.”

Next, use the Snackbar component reference returned by the
open() function, as shown in line 16. The reference object is named
snackRef. You use the function onAction() on snackRef. This
returns another observable. As the name suggests, the observer
callback function is triggered when the user performs an action on the
Snackbar component. Notice, in the previous code sample, that you
have a single action, the button “Install new version” on the Snackbar
component. Hence, when this observer is invoked, you know the user
clicked the button and can perform the install. See Listing 6-12. With
the modi�ied code, you perform the install only after the user chooses
to install by clicking the button on the Snackbar component.

01:
02: // include this snippet after snackRef created
in the SwCommunicationService
03: snackRef
04: .onAction()
05: .subscribe (() => {
06: console.log("Snackbar action performed");
07: this.updateSvc.activateUpdate().then(() =>
{
08: console.log("activate update invoked");
09: window.location.reload();
10: });
11: });

Listing	6-12 Add Snackbar Module to Web Arcade

Consider the following explanation:
Line 4 invokes the onAction() function on the snackRef object.
You chain the subscribe() function on the returned object. As
mentioned earlier, the onAction() function returns an observable.
The success callback provided as an observer invokes the
activateUpdate() function on the SwUpdate object. The
observer callback between lines 6 and 10 are called when the user
performs an action on the Snackbar component.
Remember, the code between lines 6 and 10 is the same as Listing 6-
6, which performed the install as soon as it identi�ied a new version.

Managing	Errors	in	Unrecoverable	Scenarios
It is possible that users have not returned to the application for a while
on a machine. Browsers will clear the cache and claim the disk space.
When the user returns to the application (after the cache was cleaned),
the service worker may not have all the scripts it needs. Imagine,
meanwhile, that a new version of the application was deployed on the
server. Now, the browser cannot obtain the deleted script (from the
cache), not even from the server. This results in an unrecoverable state
for the application. To the user, it leaves only one option: to upgrade to
the latest version.

The SwUpdate service provides an observable called
unrecoverable to handle such scenarios, as shown in Listing 6-13.
Add an error handler when an unrecoverable state occurs. Notify the
user and reload the browser window to clear the error. Similar to the
earlier code samples, add the code in the
SwCommunicationService constructor.

01: export class SwCommunicationService {
02:
03: constructor(private updateSvc: SwUpdate,
04: private snackbar: MatSnackBar) {
05: this.updateSvc.unrecoverable.subscribe(i
=> {

06: console.log('The application is
unrecoverable', i.reason);
07: let snackRef = this.snackbar
08: .open(`We identified an error loading
the application. Use the following reload button.
If the error persists, clear cache and reload the
application`,
09: "Reload");
10: snackRef
11: .onAction()
12: .subscribe (() => {
13: this.updateSvc.activateUpdate().then(
() => {
14: window.location.reload();
15: });
16: });
17: });
18: }
19: }

Listing	6-13 Handle the Unrecoverable State

Consider the following explanation:
See line 5. It subscribes to the unrecoverable observer on the
instance of SwUpdate (namely, updateSvc). The success callback
for the observable is between lines 6 and 17.
You open a Snackbar component, which alerts the user about the
error at the bottom center of the page. See Figure 6-5.

Figure	6-5 A Snackbar component alerting the user of the unrecoverable error

Notice the reason �ield on line 6. It has additional information about
the unrecoverable state. You may print and use this information in
the browser console or log it to a central location to investigate
further.

Summary
Installable and cached web applications are powerful. They enable
users to access the application in low-bandwidth and of�line scenarios.
However, you also need to build features to seamlessly upgrade the
applications. As you know, for Web Arcade, service workers manage
caching and of�line access features.

This chapter detailed how to seamlessly upgrade an Angular
application and communicate with service workers. It extensively uses

Angular’s SwUpdate service, which provides many out-of-the-box
features for identifying and activating a new version of the application.
It uses observables; you subscribe when new versions of the
applications are available or activated.

Exercise
The chapter uses a Snackbar component to alert when a new
version of the application is available. Show an alert after the
upgrade is activated. Include information from appData in
ngsw-config.json.
Extend ngsw-config.json to show additional information
about the release. Include details of enhancements and bug �ixes.
Take it close to the real-world use case. Users expect to see a
summary of details about an upgrade.
Explore positioning the Snackbar component at a different
location on the page (as opposed to the default center bottom).
Explore alerting users with more components other than a
Snackbar component. Build an experience that suits a different
use case better. Remember, we used the Snackbar component as it
does not interrupt and block an active user’s work�low. However, a
Snackbar component has been used for alerting the unrecoverable
error scenario as well. Hence, choose an appropriate alert
component and mechanism for such error conditions.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2022
V. K. Kotaru, Building	Of�line	Applications	with	Angular
https://doi.org/10.1007/978-1-4842-7930-4_7

7.	Introduction	to	IndexedDB
Venkata Keerti Kotaru1

-, Hyderabad, Telangana, India

So far you have cached the application skeleton and HTTP GET service
calls. A RESTful service provides GET calls for data retrieval. However,
HTTP also supports POST to create entities, PUT and PATCH for
updates, and DELETE to remove entities. The sample application Web
Arcade does not yet support of�line access to service calls beyond the
GET calls.

This chapter introduces IndexedDB for more advanced of�line
actions. In this chapter, you will get a basic understanding of
IndexedDB, which runs on the client side on browsers. You will learn to
get started with IndexedDB in an Angular application. JavaScript
provides APIs to integrate with IndexedDB. You can create, retrieve,
update, and delete data to/from IndexedDB, which is supported by
most modern browsers. The chapter focuses on structuring the
database including creating object stores, indices, etc. In the next
chapter, you will work with data by creating and deleting records.

Traditionally, web applications used various features for client-side
storage including cookies, session storage, and local storage. Even today
they are highly useful for storing reasonably small amounts of data.
IndexedDB, on the other hand, provides an API for more sophisticated
client-side storage and retrieval. The JavaScript API is natively
supported by most modern browsers. IndexedDB provides persistent
storage for relatively large amounts of data including JSON objects.
However, no database supports storing an unlimited amount of data.

https://doi.org/10.1007/978-1-4842-7930-4_7

The browsers set an upper limit on the amount of data stored in
IndexedDB relative to the size of the disk and the device.

IndexedDB is useful for persisting structured data. It saves data in
key-value pairs. It works like a NoSQL database, which supports using
object stores that contain records of data. The object stores are
comparable to tables in a relational database. The traditional relational
databases largely use tables with a prede�ined structure in terms of
columns and constraints (primary key, foreign key, etc.). However,
IndexedDB uses object stores to persist records of data.

IndexedDB supports high-performance searches. Data is organized
with the help of indexes (de�ined on an object store), which help to
retrieve data faster.

Terminology
Consider the following terminology working with IndexedDB:

Object	store: An IndexedDB may have one or more object stores. Each
object store acts as a container for key-value pairs of data. As
mentioned, an object store is comparable to tables in relational
databases.

An object store provides structure to the IndexedDB. Create one or
more object stores as logical containers of the application data. For
example, you may create an object store named users to store
user details and another named games to persist a list of game-
related objects.

Transactions: Data operations on IndexedDB are performed in the
context of a transaction. This helps maintain data consistency.
Remember, IndexedDB stores and retrieves data on the client side in
a browser. It is possible that more than one instance of the
applications are open by the user. It can create scenarios, where
create/update/delete operations are partially performed by each
instance of the browser. One of the browsers may retrieve stale data
while an update operation is in-progress.

Transactions help avoid the previously mentioned problems. A
transaction locks data records until the operation is complete. The

data access and modi�ication operations are atomic. That is, an
create/update/delete operation is either fully done or completely
rolled back. A retrieve operation is performed only after a data
modi�ication operation is completed or rolled back. Hence, retrieve
never returns inconsistent and stale data objects.
IndexedDB supports three modes of transactions, namely,
readonly, readwrite, and versionchange. As you can
imagine, readonly helps with retrieve operations and
readwrite with create/update/delete operations. However,
versionchange mode helps create and delete object stores on
an IndexedDB.

Index: An index helps retrieve data faster. An object store sorts data
in the ascending order of the key. A key implicitly does not allow
duplicate values. You can create additional indices that also act as a
uniqueness constraint. For example, adding an index on a Social
Security number or national ID ensures there are no duplicates in
IndexedDB.
Cursor: A cursor helps iterate over records in an object store. It is
useful while iterating over the data records during the query and
retrieval process.

Getting	Started	with	IndexedDB
IndexedDB is supported by major browsers. The API enables
applications to create, store, retrieve, update, and delete records in a
local database, within the browser. This chapter details using
IndexedDB with the native browser API.

The following are the typical steps when working with IndexedDB:
1.

Create	and/or	open	a	database: For the �irst time, create a new
IndexedDB database. As the user comes back to the web
application, open the database to perform actions on the database.

2. Create	and/or	use	an	object	store: Create a new object store the �irst
time a user accesses the functionality. As mentioned earlier, an
object store is comparable to a table in a relational database
management system (RDBMS). You may create one or more object

stores. You create, retrieve, update, and delete documents in an
object store.

3.
Start	a	transaction: Actions are performed on an IndexedDB object
store as a transaction. It enables you to maintain a consistent state.
For example, it is possible the user closes the browser while an
action is being performed on the IndexedDB database. As the action
is performed in the context of a transaction, if it is not complete, the
transaction is aborted. A transaction ensures an error or an edge
condition does not leave the database in an inconsistent or
unrecoverable state.

4.
Perform	CRUD: Like any database, you create, retrieve, update, or
delete documents in an IndexedDB.

Consider the following Web Arcade use case, taking advantage of

IndexedDB.
In an earlier chapter, you have seen a page showing a list of board

games. Consider supporting a new use case with a game details page.
Figure 7-1 details all the information about a game. Below the game
description, you show a list of user comments and a form allowing
users to add new comments. As a user types in a new comment and
submits the form, you post this data to a remote HTTP service. The
service ideally persists the user comment in a permanent
storage/database like MongoDB or Oracle or Microsoft SQL Server.
Considering the server-side code is not in the scope of this book, we
will keep it simple. In the next chapter, the code samples showcase a
service that stores the user comments in a �ile.

Figure 7-1 shows the section of the page with a current list of
comments and a form that allows users to submit new comments.

Figure	7-1 List and submit comments on a game details page

The submit action creates a new comment. The service endpoint is
an HTTP POST method. As mentioned, the Web Arcade supports of�line
access on HTTP GET calls. Imagine losing connectivity as a user types in
a comment and clicks Submit. A typical web application returns an
error or a message similar to “Page can’t be displayed.” Web Arcade is
designed to be resilient to the loss of network connectivity. Hence, Web
Arcade caches user comments and synchronizes with a server-side
service when the user returns to the application.

Angular	Service	for	IndexedDB
Create a new service by running the following command:

ng generate service common/idb-storage-access

The command creates a new service called
IdbStorageAccessService in the directory src/app/common.
The service is to abstract code statements accessing IndexedDB. It is a
central service that uses a browser API to integrate with IndexedDB.
During initialization, the service performs one-time activities like
creating a new IndexedDB store or opening the database if it already
exists. See Listing 7-1.

01: @Injectable()
02: export class IdbStorageAccessService {
03:
04: idb = this.windowObj.indexedDB;
05:
06: constructor(private windowObj: Window) {
07: }
08:
09: init() {
10: let request = this.idb
11: .open('web-arcade', 1);
12:
13: request.onsuccess = (evt:any) => {
14: console.log("Open Success", evt);
15: };
16:
17: request.onerror = (error: any) => {
18: console.error("Error opening IndexedDB",
error);
19: }
20: }
21:
22: }
23:

Listing	7-1 Initialize IndexedDB with the IdbStorageAccessService

Note By default, the ng generate service command provides
the service at the root level. In the context of the Web Arcade

application, you may want to remove the provideIn: 'root'
statement on line 1. Just leave the inject() decorator , as shown
in the �irst line.

This is explained in detail in the following section along with
Listing 7-2.

Consider the following explanation:
Line 4 creates the class variable idb (short for IndexedDB). It is set
to the indexedDB instance on the global window object. The
indexedDB object has an API that helps open or create a new
IndexedDB. Line 4 runs while initializing
IdbStorageAccessService, similar to constructor.

Note Notice, the global window object is accessed through a
Window service. See the constructor on line 6. It injects the window
service. The instance variable is named windowObj. The Window
service is provided in the AppModule.

See lines 9 to 20 for the init() function initializing the service.
See lines 10 and 11 that run the open() function on the idb object.
If it is the �irst time a user opened the application on a browser, it
creates a new database.
a.

The �irst parameter is the name of the database, web-arcade.
b.

The second parameter (value 1) speci�ies a version for the
database. As you can imagine, new updates to the application
cause changes to the IndexedDB structure. The IndexedDB API
enables you to upgrade the database as the version changes.

To return a user, the database was already created and available on
a browser. The open() function attempts to open the database. It
returns an object of the IDBOpenDBRequest object.

Figure 7-2 shows a new IndexedDB web-arcade that was created.
The image was captured using Google Chrome’s developer tools.
Similar functionality is available for developers on all major browsers
including Firefox and Microsoft Edge.

Figure	7-2 IndexedDB in Google Chrome Dev Tools

Almost all the IndexedDB APIs are asynchronous. An action like
open does not attempt to complete the operation immediately. You
specify a callback function, which is invoked after completing the
action. As you can imagine, the open action can be successful or error
out. Hence, de�ine a callback function for each outcome, onsuccess or
onerror. See lines 13 to 15 and lines 17 to 19 in Listing 7-1. For the
moment, you just print the result on the console (lines 14 and 18). We
will further enhance handling the result in the upcoming code snippets.

When is the init() function invoked? It is one of the methods on
the Angular service. You may invoke it in a component, which means
IndexedDB is initialized only when you load (or navigate) to the
component. On the other hand, an application like Web Arcade is highly
dependent on IndexedDB. You may need to make use of the service
from multiple components. The service needs to complete initialization

and be ready for CRUD operations. Hence, it is a good idea to initialize
the service along with the application, while the primary module
AppModule starts. Consider Listing 7-2.

03: import { NgModule, APP_INITIALIZER } from
'@angular/core';
15: import { IdbStorageAccessService } from
'./common/idb-storage-access.service';
18:
19: @NgModule({
20: declarations: [
21: AppComponent,
25:],
26: imports: [
27: BrowserModule,
40:],
41: providers: [
42: IdbStorageAccessService,
43: {
44: provide: APP_INITIALIZER,
45: useFactory: (svc:
IdbStorageAccessService) => () => svc.init(),
46: deps: [IdbStorageAccessService], multi:
true
47: }
48:],
49: bootstrap: [AppComponent]
50: })
51: export class AppModule { }
52:

Listing	7-2 Initialize IndexedDB with IdbStorageAccessService

Considering the following explanation:
See lines 42 to 48. The �irst line (line 42) in the block provides a
newly created IDBStorageAccessService. Why do we need it?
As you have seen, we did not provide the service at the root level. We

removed the line of code provideIn: 'root' in
IdbStorageAccessService (Listing 7-1).
See lines 43 to 47, which provide APP_INITIALIZER and use the
factory function, which invokes init().
In summary, we provide and initialize the IdbStorageService at
a module level. In this example, you do it in AppModule . It could
have been any module.

It creates and/or opens the Web-Arcade IndexedDB on the
browser. It keeps the database ready for further operations (e.g.,
CRUD). This code eliminates the need to inject the service into a
component (or another service) and call the init() function. The
service initializes along with the AppModule.

Creating	Object	Store
While the database is the highest level in IndexedDB, it can have one or
more object stores. You provide a unique name to each object store
within a database. An object store is a container that persists data. In
the current example with Web Arcade, you will see how to save JSON
objects. For ease of understanding, an object store is comparable to
tables in a relational database.

Using	“onupgradeneeded”	Event
An event called onupgradeneeded is triggered after creating or
opening an IndexedDB. You provide a callback function that is invoked
by the browser when this event occurs. In the case of a new database,
the callback function is a good place to create object stores. For a pre-
existing database, if an upgrade is required, you may perform design
changes here. For example, you may create new object stores, delete
unused object stores, and modify an existing object store by deleting
and re-creating it. Consider Listing 7-3.

01: init() {
02: let request = this.idb
03: .open('web-arcade', 1);
04:

05: request.onsuccess = (evt: any) => {
06: console.log("Open Success", evt);
07: };
08:
09: request.onerror = (error: any) => {
10: console.error("Error opening
IndexedDB", error);
11: }
12:
13: request.onupgradeneeded = function (event:
any) {
14: console.log("version upgrade event
triggered");
15: let dbRef = event.target.result;
16: dbRef
17: .createObjectStore("gameComments",
{ autoIncrement: true });
18: };
19: }

Listing	7-3 onupgradeneeded Event Callback

Considering the following explanation:
Notice that the code snippet repeated the init() function from
Listing 7-1. In addition to the onsuccess and onerror callbacks,
an event handler called onupgradeneeded is included. See lines 13
to 18.
The event is provided as a parameter to the function callback.
You can access a reference to IndexedDB on the event target on an
object, namely, target.
Use the db reference to create an object store. In this example, you
name the object store gameComments. As explained earlier, you use
IndexedDB and the object store to cache user comments if the user
loses connectivity.

An object store persists data in key-value pairs. As you will see in
the next few sections, data is retrieved using the key. It is a primary key
uniquely identifying a value stored in IndexedDB. The following are the

two options to create a key (for the values stored in an object store).
This is decided at the time of creating an object store. See line 17 in
Listing 7-3. Notice the second parameter on the
createObjectStore() function . You specify one of the following
two options:

Auto	increment: IndexedDB manages the key. It creates a numeric
value and increments for every new object added in the object store.

dbRef.createObjectStore("gameComments", {

autoIncrement: true });

Key	path: Specify a key path within the JSON object being added. As
the key value is provided explicitly, ensure you provide unique
values. A duplicate value causes the insert to fail.

A �ield called commentId is provided as a keypath. If used,
ensure you provide a unique value for commentId.

dbRef.createObjectStore("gameComments", {

keypath: 'commentId' });

Note A key path can be supplied only for a JavaScript object.
Hence, creating an object store with a key path constrains it to store
only the JavaScript objects. However, with auto increment,
considering the key is managed by IndexedDB, you may store any
type of object including a primitive type.

See Figure 7-3 with the newly created gameComments object store.

Figure	7-3 gameComments object store and a sample value

Creating	Index
While de�ining an object store, you can create additional indices that
also act as a uniqueness constraint. The index is applied on a �ield in the
JavaScript object persisted in the object store. Consider the following
code snippet. It explains the createIndex API on the object store
reference.

objectStoreReference.createIndex('indexName',
'keyPath', {parms})

Consider the following explanation:
Index name: The �irst parameter is an index name (arbitrary).
Key path: The second parameter, keypath, speci�ies that the
index needs to be created on the given �ield.
Params: You may specify the following parameters for creating an
index:
a. 

unique: This creates an uniqueness constraint on a �ield
provided at the keypath.

b. 

multiEntry: This is applied on an array.

If true, the constraint ensures each value in the array is unique. An
entry is added to the index for each element in the array.

If false, the index adds a single entry for the entire array. The
uniqueness is maintained at the array object level.

In the gameComments object store, imagine each comment will
have an ID. To ensure the ID is unique, add an index. Consider Listing 7-
4.

1: request.onupgradeneeded = function(event: any){
2: console.log("version upgrade event
triggered");
3: let dbRef = event.target.result;
4: let objStore = dbRef
5: .createObjectStore("gameComments", {
autoIncrement: true })
6:
7: let idxCommentId =
objStore.createIndex('IdxCommentId', 'commentId',
{unique: true})
8: };

Listing	7-4 Create Index IdxCommentId for the Comment ID

Notice that line 7 creates an index using an object store reference,
objStore. The index is named IdxCommentId. The index is added to
the commentId �ield. You can see that the parameter unique is set to
true, which ensures commentId is distinct for each record. Figure 7-4
showcases the object store with the new index.

Figure	7-4 Index IdxCommentId on an object store

Browser	Support
Figure 7-5 depicts the browser support for the global indexedDB
object (windowObj.indexedDB). Notice that the data is captured on
the Mozilla website, at https://developer.mozilla.org/en-
US/docs/Web/API/indexedDB. It is a reliable and open source
platform for web technologies. Mozilla has been an advocate of the
open web and has pioneered safe and free Internet technologies
including the Firefox browser.

https://developer.mozilla.org/en-US/docs/Web/API/indexedDB

Figure	7-5 window.indexedDB browser support

Also refer to CanIUse.com, which is a reliable source of browser
compatibility data. For IndexedDB, use the URL
https://caniuse.com/indexeddb.

Limitations	of	IndexedDB
While IndexedDB provides a good solution for client-side persistence
and querying in a browser, it is important to be aware of the following
limitations:

It does not support internationalized sorting, so sorting non-English
strings could be tricky. Few languages sort strings differently from
English. At the time of writing this chapter, localized sorting is not
fully supported by IndexedDB and all the browsers. If this feature is

https://caniuse.com/indexeddb

important, you might have to retrieve data from the database and
write additional custom code to sort.
There is no support for full-text search yet.
IndexedDB cannot be treated as a source of truth for data. It is
temporary storage. Data could be lost or cleared in the following
scenarios:
a.

The user resets the browser or clears the database manually.
b.

The user launches the application in a Google Chrome Incognito
window or a private browsing session (on other browsers). As
the browser window is closed, considering it was a private
session, the database will be removed.

c.
Disk quota for persistent storage is calculated based on a few
factors including available disk space, settings, device platform,
etc. It is possible the application crossed the quota limit and
further persistence failed.

d.
Miscellaneous situations including corrupt databases, a bug
upgrading the database caused by an incompatible change, etc.

Summary
This chapter provided a basic understanding of IndexedDB, which runs
on the client side on browsers. JavaScript provides a native API to work
with IndexedDB. It is supported by most modern browsers.

The chapter also explained how to initialize the Angular service
along with AppModule. In the initialization process, you create or open
IndexedDB store for Web Arcade. You create a new IndexedDB store if it
is the �irst time a user is accessing the application on a browser. You
open the pre-existing database if it is already there.

Next, the chapter explained how to use the onupgradeneeded
function callback for creating an object store and indices. These are
one-time activities for the �irst time a user accesses the application.

Exercise
Create an additional object store for creating new games. Perform
the action while loading the application (or the Angular module).
Create the object store to use a designated ID as the key (primary).
Do not use auto increment.
Create an additional index on the game title. Ensure it is unique.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer
Nature 2022
V. K. Kotaru, Building	Of�line	Applications	with	Angular
https://doi.org/10.1007/978-1-4842-7930-4_8

8.	Creating	the	Entities	Use	Case
Venkata Keerti Kotaru1

-, Hyderabad, Telangana, India

While working with data, you began with data retrieval. You used
remote HTTP services to make GET calls and show the data on the
screen in an Angular application. You created the ability to cache
resources including data calls. As you progress, applications need to
create, update, and delete data. In an application that supports of�line
functionality, the create, update, and delete actions are complex.

This chapter establishes a use case for handling such scenarios. It
details how to build Angular components and services that perform the
create action. The example can be easily upgraded to edit and delete
actions. The previous chapter introduced IndexedDB for persisting data
in the browser. It is typically used for managing cache. The use case
described in this chapter helps take full advantage of the IndexedDB
implementation. As you proceed further in the book, the next chapter
details how to perform of�line actions with IndexedDB, so you need to
understand the use case we will build in this chapter.

In Web Arcade, the create, update, and delete actions are performed
on the game details page. The page will call remote HTTP services to
save data. The chapter begins by explaining the HTTP methods for the
previously mentioned actions. Next, it details how to create the
component. It introduces Angular routing for navigation between the list
component, which shows a list of board games and the details page.
Next, it details the features we build on the game details page while
developing the use case. Finally, the chapter details how to build mock
server-side services to support the Angular application.

https://doi.org/10.1007/978-1-4842-7930-4_8

Web	Arcade:	Game	Details	Page
The game details page shows the details of a selected game. We use this
page to showcase an example of how to synchronize of�line actions with
a remote HTTP service.

While invoking a remote HTTP service, the HTTP methods de�ine a
desired action to be performed. Consider the following most used HTTP
methods:

GET retrieves data. For example, it retrieves a list of board games.
POST submits or creates an entity. For example, it creates a service to
create a board game or add user comments on a game that
implements the POST method.
PUT replaces or fully updates an entity. For example, consider a board
game entity with �ields for a game ID, the game title, a game
description, a web link with comprehensive details about the game,
the origin, etc. For a given game ID, use a PUT method to replace all
the �ields. Even if a few �ields do not change, you can provide the same
values again while using the PUT method.
PATCH replaces or updates a few �ields on an entity. In the previous
example, consider updating just the origin �ield. Develop an HTTP
service with PATCH to update the origin �ield on an entity.
DELETE removes or deletes an entity.

Note In addition to the previous HTTP methods, there are other less
used HTTP methods including HEAD, CONNECT, OPTIONS, and
TRACE.

So far, of�line access was provided to GET service calls. This chapter uses
IndexedDB to cache and synchronize POST service calls. You may use a
similar implementation on the remaining HTTP methods.

In an earlier chapter, you created a component to show a list of
games. In this chapter, you will update the sample so that a click selects
a game to navigate to the details page. See Figure 8-1.

Figure	8-1 Navigation to a game details page

The game details page has a description and additional details about
a game. It lists comments from all the users. It provides a form at the
bottom to submit a new comment. See Figure 8-2.

Figure	8-2 Fields on game details page

Of�line	Scenario
A user can submit comments. When online, the service calls an HTTP
service to post new comments. However, if of�line, use IndexedDB to
save the comments temporarily. Once back online, post the comments to
the remote service.

Creating	a	Component	for	Game	Details

Run the following Angular CLI command to create a new component:

ng g c game-details

In the next few sections, you will update the component to show the
game details. However, the game was selected in the earlier game list
component. How does the game details component know about the
selected game? Remember, you navigate to the game details as the user
selects from a list of board games. The list component provides the
selected game ID as a query param in the URL. Consider the following
for a URL with the game ID parameter:

http://localhost:4200/details?gameId=1

Routing
Angular routing enables Angular applications to take advantage of the
URL (see the address bar in a browser) and load content on the �ly. You
map a component to a path in the URL. The component loads as the user
navigates to the respective path.

Remember, when you created a new application for Web Arcade with
Angular CLI, routing was already set up. This includes an
AppRoutingModule for con�iguring custom paths and URLs. Update
the route con�iguration to show the game list component �irst and the
game details component when navigating to the details page (as shown
at the previously mentioned URL). Consider the route con�iguration in
app-routing.module.ts, as shown in Listing 8-1.

06: const routes: Routes = [{
07: path: "home",
08: component: BoardGamesComponent
09: }, {
10: path: "details",
11: component: GameDetailsComponent
12: }, {
13: path: "",
14: redirectTo: "/home",
15: pathMatch: "full"

16: }];
17:
18: @NgModule({
19: imports: [RouterModule.forRoot(routes)],
20: exports: [RouterModule]
21: })
22: export class AppRoutingModule { }
23:

Listing	8-1 Route Con�iguration

Notice that the board games component is con�igured to load with
the path /home, and the game details component is con�igured to load
with the path /details, for example,
http://localhost:4200/home and
http://localhost:4200/details.

The components load at router-outlet in the HTML template.
Remember, AppComponent is the root component. Update the router
outlet to load the previously mentioned components as and when the
user navigates to the respective URLs (paths). Consider the following
short snippet:

1: <div class="container align-center">
2: <router-outlet></router-outlet>
3: </div>

Navigate	to	Game	Details	Page
Next, update the list component (BoardGamesComponent) to navigate
to the details page. Edit the component’s HTML template
(src/app/components/board-games/board-
games.component.html). See Listing 8-2.

01: <mat-toolbar color="primary">
02: <mat-toolbar-row>Game List</mat-toolbar-
row>
03: </mat-toolbar>
04: <div>

05: <ng-container *ngFor="let game of (games |
async)?.boardGames">
06: <a (click)="gameSelected(game)">
07: <mat-card>
08: <mat-card-header>
09: <h1>
10: {{game.title}}
11: </h1>
12: </mat-card-header>
13: <mat-card-content>
14:
{{game.alternateNames}}
15: <div>{{game.origin}}</div>
16: <div>{{game.description}}
</div>
17: </mat-card-content>
18: </mat-card>
19:
20: </ng-container>
21: </div>

Listing	8-2 Board Games Component Template

Consider the following explanation:
See lines 6 and 19. Each game (card) is enclosed in a hyperlink
element, <a>.
Notice that line 5 iterates through a list of games with the ngFor
directive. The variable game represents a game in the iteration.
In line 6, the click event is handled by the gameSelected()
function. Notice the game variable is passed in as a parameter. This is
the variable with game data in the current iteration.

The gameSelected function (de�ined in the game details
component’s TypeScript �ile) navigates to the game details page, as
shown in Listing 8-3.

01:

02: export class BoardGamesComponent implements
OnInit {
03:
04: constructor(private router: Router) { }
05:
06: gameSelected(game: BoardGamesEntity){
07: this.router.navigate(['/details'],
{queryParams: {gameId: game.gameId}})
08: }
09:
10: }

Listing	8-3 Navigate to the Details Page

Consider the following explanation:
A router service instance is injected in line 4.
Line 7 uses a router instance to navigate to the details page.
Notice that a query param game ID is provided. The game object is
passed in from the template. See the earlier Listing 8-2.
The game-id selected in the current list component
(BoardGamesComponent) will be used in the game details
component. It retrieves complete details of the selected game.

Next, retrieve the game ID from the URL in the game details
component, as shown in Listing 8-4.

01: import { Component, OnInit } from
'@angular/core';
02: import { ActivatedRoute } from
'@angular/router';
03:
04: @Component({
05: selector: 'wade-game-details',
06: templateUrl: './game-details.component.html',
07: styleUrls: ['./game-details.component.sass']
08: })
09: export class GameDetailsComponent implements
OnInit {

10: game: BoardGamesEntity;
 commentsObservable = new
Observable<CommentsEntity[]>();
11: constructor(private router: ActivatedRoute,
private gamesSvc: GamesService) { }
12:
13: ngOnInit(): void {
14: this.router
15: .queryParams
16: .subscribe(r =>
17: this.getGameById(r['gameId']));
18: }
19:
20: private getGameById(gameId: number){
21: this.gamesSvc.getGameById(gameId).subscribe(
22: (res: BoardGamesEntity) => {
23: this.game = res;
24: this.getComments(res?.gameId);
25: });
26: }
27: }
28:
29: private getComments(gameId: number){
30: this.commentsObservable =
this.gamesSvc.getComments(gameId);
31: }
32:

Listing	8-4 Retrieve Game ID from Query Params

Consider the following explanation:
The sample uses the ActivatedRoute service to read query params
in the URL.
Line 2 imports the ActivatedRoute service from Angular’s router
module. Next, line 11 injects the service into the component. The
service instance is named router.
See the ngOnInit() function between lines 13 and 18. This function
is invoked after the constructor and during the component

initialization.
See the code between lines 14 and 17. Notice that the code uses
router.queryParams. The queryParams is an observable.
Subscribe to it to access the query params.
The result of the queryParams subscription is named r. Access the
game ID as a �ield on the result, r['gameId']. Now, you have access
to the game ID provided by BoardGamesComponent.
Pass the game ID as a function parameter to a private function,
getGameById(). This function is de�ined in lines 20 to 27.
The getGameById() function invokes another function with the
same name getGameById() de�ined as part of GamesService. It
returns an observable, and subscribing to it returns results from an
HTTP service. The remote HTTP service provides game details by
GameId.
In line 23, you set the results from the HTTP service onto a game
object on the component, which is used in the HTML template.
The HTML template shows the game details to the user.
Next, call the private function getComments(), which retrieves
comments on the given board game. See lines 29 to 31. It invokes the
getComments() function on the GameService instance, which
obtains data from a remote HTTP service.
Set results from the HTTP service onto a commentsObservable
object on the component, which is used in the HTML template. The
HTML template shows the comments.

In summary, Listing 8-4 retrieves the game details and comments
and sets them on a class variable. In line 23, the class �ield game has
selected the game title, description, etc. Next, on line 30, the class �ield
commentsObservable has a list of comments. These are comments
made by various users on the selected game. Next, see the HTML
template code that renders the game details and comments. Consider
Listing 8-5 .

01:
02: <!-- Toolbar to provide a title-->
03: <mat-toolbar [color]="toolbarColor">
04: <h1>Game Details</h1>

05: </mat-toolbar>
06:
07:
08: <!-- This section shows game title and
description-->
09: <div *ngIf="game">
10: <h2>{{game.title}}</h2>
11: <div>{{game.description}}</div>
12: </div>
13:
14:
15: <!-- Following section shows comments made by
users -->
16: <div>
17:
18: Comments
19:
20: <hr />
21: <mat-card *ngFor="let comment of
commentsObservable | async">
22: <mat-card-header>
23:
24: {{comment.title}}
25:
26: </mat-card-header>
27: <mat-card-content>
28: <div>{{comment.comments}}</div>
29: <div>{{comment.userName}}
 {{comment.timeCommented
| date}}</div>
30: </mat-card-content>
31: </mat-card>
32: </div>

Listing	8-5 Game Details Component HTML Template

Consider the following explanation:

Lines 10 and 11 show the game title and description. Line 9 checks if
the game object is de�ined (with an ngIf directive). This is to avoid
errors with the component before the game data is obtained from the
service. As you can imagine, when the component �irst loads, the
service call is still in progress. The game title, description, and other
�ields are not yet available. Once retrieved from the service, the ngIf
condition turns true, and the data is displayed.
See line 21. It iterates through the comments. Line 24 shows the
comment title. Lines 28 and 29 show the comment description,
username, and comment timestamp.
See Listing 8-4. commentsObservable is of type Observable.
Hence, line 27 in Listing 8-5 uses | async.
Notice the following HTML styling decisions:

The listing uses Angular Material’s Toolbar component (mat-
toolbar) to show the title. See lines 3 to 5.
Each comment is shown on an Angular Material card. See the
components mat-card, mat-card-header, and mat-card-
content on lines 21 to 31.

Listing 8-4 uses two functions from a service: getGameById() and
getComments(). As you can imagine, the Angular service function
invokes a remote HTTP service to get the data.

Remember, we developed mock services to demonstrate remote
HTTP service functionality. You returned mock JSON for board games.
For the previous two functions, getGameById() and
getComments(), you will extend the Node.js Express service. It is
covered later in the chapter, in the section “Updates to Mock HTTP
Services.”

Note A real-world service integrates with and creates, retrieves,
and updates data in mainstream databases such as Oracle, Microsoft
SQL Server, or MongoDB. It is out of scope for this book. To ensure the
code samples are functional, we created mock services.

However, as you have seen in the previous code samples, the
components do not integrate directly with remote HTTP services. You

use an Angular service, which uses other services to abstract this
functionality from the components. The components purely focus on
presentation logic for the application.

Remember, you created a service called GamesService for
encapsulating the code that retrieves games data. Next, update the
service to include the previous two functions getGamesById() and
getComments(), as shown in Listing 8-6.

01: @Injectable({
02: providedIn: 'root'
03: })
04: export class GamesService {
05:
06: constructor(private httpClient: HttpClient)
{ }
07:
08: getGameById(gameId: number):
Observable<BoardGamesEntity>{
09: return this
10: .httpClient
11: .get<BoardGamesEntity>
(environment.boardGamesByIdServiceUrl,{
12: params: {gameId}
13: });
14: }
15:
16: getComments(gameId: number):
Observable<CommentsEntity[]>{
17: return this
18: .httpClient
19: .get<CommentsEntity[]>
(environment.commentsServiceUrl,{
20: params: {gameId}
21: });
22: }
23:
24: }

Listing	8-6 Game Service Invoking Remote HTTP Services

Consider the following explanation:
Line 6 injects the HttpClient service. It is an out-of-the-box service
provided by Angular to make HTTP calls.
See lines 10 and 18. The functions use the HttpClient instance
httpClient. It invokes the remote HTTP service.
Both the functions use the GET HTTP method. The �irst parameter is
the endpoint URL.
It is advisable to con�igure URLs (instead of hard-coding them in the
application). Hence, the URLs are updated in an environment �ile. See
Listing 8-7 for the environment �ile.
Notice that both the functions require gameId as a parameter. See
lines 8 and 16.
The game is passed as a query param to the remote HTTP service. See
lines 12 and 20.
Notice that getGameById() returns an observable of type
BoardGamesEntity (Observable<BoardGamesEntity>).
The remote service is expected to return a JSON response adhering to
the interface contract speci�ied in BoardGamesEntity. See Listing
8-8(a) for the interface de�inition.
getComments() returns an observable of type CommentsEntity
(Observable<CommentsEntity>). As multiple comments are
retrieved from the service, it is an array. The remote service is
expected to return a JSON response adhering to the interface contract
speci�ied in CommentsEntity. See Listing 8-8(b) for the interface
de�inition.
The remote service calls return an observable because they are
asynchronous. The service does not return the data as soon as the
browser invokes it. The code does not wait until the result is returned.
Hence, a subscriber callback function is invoked once the data is
available from the remote service.

08: export const environment = {
09: boardGameServiceUrl: `/api/board-games`,
10: commentsServiceUrl: '/api/board-
games/comments',

11: boardGamesByIdServiceUrl: '/api/board-
games/gameById',
12: production: false,
13: };
14:

Listing	8-7 Environment File with Additional Endpoints

01: export interface BoardGamesEntity {
02: gameId: number;
03: age: string;
04: link: string;
05: title: string;
06: origin: string;
07: players: string;
08: description: string;
09: alternateNames: string;
10: }

Listing	8-8(a) TypeScript Interface BoardGamesEntity

1: export interface CommentsEntity {
2: title: string;
3: comments: string;
4: timeCommented: string;
5: gameId: number;
6: userName:string;
7: }

Listing	8-8(b) TypeScript Interface CommentsEntity

Note The URLs are required in two �iles:
src/environments/environment.ts and
src/environments/environment.prod.ts. The
environment.ts �ile is used for development builds (for example,
yarn start). The environment.prod.ts �ile is used for
production builds (for example, yarn build or ng build).

Adding	Comments
See Figure 8-2. Notice the last section with a data form to add a
comment. It enables users to add comments about the board game. So
far you have largely worked with data retrieval. This is an example of
creating an entity, namely, a comments entity. As mentioned earlier, you
use the HTTP POST method for creating an entity in the back-end
system.

Consider Listing 8-9, which shows the Add Comment HTML
template.

01: <div>
02: <mat-form-field>
03: <mat-label>Your name</mat-label>
04: <input matInput type="text"
placeholder="Please provide your name"
(change)="updateName($event)">
05: </mat-form-field>
06: </div>
07:
08: <div>
09: <mat-form-field>
10: <mat-label>Comment Title</mat-label>
11: <input matInput type="text"
placeholder="Please provide a title for the
comment" (change)="updateTitle($event)">
12: </mat-form-field>
13: </div>
14:
15: <div>
16: <mat-form-field>
17: <mat-label>Comment</mat-label>
18: <textarea name="comment" id="comment"
placeholder="Write your comment here"
(change)="updateComments($event)" matInput
cols="30" rows="10"></textarea>
19: </mat-form-field>
20: </div>

21:
22: <button mat-raised-button color="primary"
(click)="submitComment()">Submit</button>

Listing	8-9 Add Comment HTML Template

Consider the following explanation:
Notice lines 1 to 20. They create form �ields for the username, title,
and comment detail.
The listing uses Material Design components and directives. Lines 4,
11, and 18 use matInput with the elements input and text area,
respectively. These Angular Material elements need the Material
Design input module. See Listing 8-10, lines 1 and 8.
The mat-form-field component encapsulates the form �ield and
the label. The component mat-label shows a label for the form
�ield.
Lines 4, 11, and 18 use change event data binding with the functions
updateName(), updateTitle(), and updateComments().
Listing 8-11 sets the value of a form �ield to a variable in the
component. The change event occurs every time a change occurs (a
user types in a value) in the form �ield.
In Listing 8-9, notice the click event data binding in the HTML
template on line 22. The TypeScript function submitComments() is
called as and when the user clicks the button.

01: import { MatInputModule } from
'@angular/material/input';
02:
03: @NgModule({
04: declarations: [
05: AppComponent,
06:],
07: imports: [
08: MatInputModule,
09: BrowserAnimationsModule
10:],
11: bootstrap: [AppComponent]
12: })

13: export class AppModule { }
14:

Listing	8-10 Import Angular Material Input Module

Consider Listing 8-11 for the component’s TypeScript code. It
includes change event handlers and click event handlers in the
comments form.

01: import { Component, OnInit } from
'@angular/core';
02: import { MatSnackBar } from
'@angular/material/snack-bar';
03: import { GamesService } from
'src/app/common/games.service';
04:
05: @Component({
06: selector: 'wade-game-details',
07: templateUrl: './game-details.component.html',
08: styleUrls: ['./game-details.component.sass']
09: })
10: export class GameDetailsComponent implements
OnInit {
11:
12: name: string = "";
13: title: string = "";
14: comments: string = "";
15:
16: constructor(private gamesSvc: GamesService,
17: private snackbar: MatSnackBar) { }
18:
19: updateName(event: any){
20: this.name = event.target.value;
21: }
22:
23: updateTitle(event: any){
24: this.title = event.target.value;
25: }
26:

27: updateComments(event: any){
28: this.comments = event.target.value;
29: }
30:
31: submitComment(){
32: this
33: .gamesSvc
34: .addComments(this.title, this.name,
this.comments, this.game.gameId)
35: .subscribe((res) => {
36: this.snackbar.open('Add comment
successful', 'Close');
37: });
38: }
39:
40: }

Listing	8-11 Comments Form Handlers

Consider the following explanation:
See lines 19 to 29 for the functions updateName(),
updateTitle(), and updateComments(). Remember, they are
invoked on change events in the form �ields. Notice the function
de�inition uses event.target.value. The event’s target refers to
the form �ield (DOM element). The value returns the data typed in by
the user.
The values are set to the class variables name (for user name), title
(for comment title), and comments (for comment description).
The submit button’s click event is data bound to the
submitComment() function. See lines 32 to 38. Notice that it
invokes the addComments() function on the service GameService
instance (gameSvc). On line 16, GameService is injected to be used
in the component.
Notice the service function requires a list of parameters including the
username, title, and description. The values captured earlier (with the
change event handler) are passed into the service function.

addComments() invokes the server-side HTTP service. If the add
comment action is successful, the success callback for the observable
is invoked. It shows a success message, providing the feedback on the
add comment action.

Listing 8-12 shows the GameService implementation . The listing
focuses on the addComments() action.

01: import { Injectable } from '@angular/core';
02: import { HttpClient } from
'@angular/common/http';
03: import { environment } from
'src/environments/environment';
04:
05:
06: @Injectable({
07: providedIn: 'root'
08: })
09: export class GamesService {
10:
11: constructor(private httpClient: HttpClient) {
}
12:
13: addComments(title: string, userName: string,
comments: string, gameId: number, timeCommented =
new Date()){
14: return this
15: .httpClient
16: .post(environment.commentsServiceUrl, [{
17: title,
18: userName,
19: timeCommented,
20: comments,
21: gameId
22: }]);
23: }
24: }

Listing	8-12 GameService Implementation

Consider the following explanation:
Line 11 injects the HttpClient service. This is an out-of-the-box
service provided by Angular to make HTTP calls.
In lines 14 and 22, the functions use the HttpClient instance called
httpClient. This invokes the remote HTTP service.
In line 16, notice you are making an HTTP POST call. The �irst
parameter is the service URL. Considering that the URL is a
con�iguration artifact, it is updated in the environment �ile.
The second parameter is the POST method’s request body. See Figure
8-5 to understand how the values translate to the request body on the
network.

Note One comments URL is used for two actions, retrieving and
creating comments. A RESTful service uses the HTTP method GET for
retrieval. For a create action, the same URL is used with the POST
HTTP method.

Updates	to	Mock	HTTP	Services
The new components need additional data and features from the remote
HTTP services. This section details changes to the mock services. In a
real-world application, such services and features are developed by
querying and updating the database. As it is out of scope for the book,
we will develop mock services.

Filtering	Game	Details	by	ID
The game details component needs one game detail at a time.
Remember, in an earlier chapter, you developed a service to return all
the board games. This section details how to retrieve game data by ID.

Remember, we use mock-data/board-games.js for all the
board games related endpoints. Add a new endpoint, which retrieves a
game by ID. Name it /gameById, as shown in Listing 8-13.

1: var express = require('express');
2: var router = express.Router();

3: var dataset = require('../data/board-
games.json');
4:
5: router.get('/gameById', function(req, res, next)
{
6: res.setHeader('Content-Type',
'application/json');
7: res.send(dataset
 .boardGames
 .find(i => +i.gameId ===
+req.query.gameId));
8: });

Listing	8-13 Filter Game by an ID

Consider the following explanation:
Line 7 �ilters board games by game ID. The statement dataset
.boardGames.find(i => +i.gameId ===
+req.query.gameId) returns the game details with the given ID.
Typically, we expect a single game with an ID. In a different scenario, if
you anticipate more than one result, use the filter() function
instead of find().
The results from the find() function are passed in as a parameter to
the send() function on the response object (variable name res).
This returns the results to the client (browser). See Figure 8-3.

See line 3. The mock service retrieves a list of board games from a
mock JSON object in the data directory.
See line 5. The HTTP method for this �ilter endpoint is GET.
See line 6. The response content type is set to JSON, which is a
ready-to-use format for the Angular services and components.

Figure	8-3 Filtering the game by an ID

Note Notice the + symbol on line 7. This is a way in JavaScript to
type case a string to a number.

Retrieving	Comments
The game details page lists comments, as shown in Figure 8-2. Notice
the list of comments below the game description. This section details
how to create a mock server-side service to retrieve comments.

The service returns comments on a given game. It uses a query
param for the game ID. Consider an example URL,
http://localhost:3000/api/board-games/comments?
gameId=1. See Figure 8-4.

Figure	8-4 The comments endpoint

A real-world service integrates with a database to ef�iciently store
and query data. As mentioned earlier, it is a mock service. Hence, it
reads comments from a �ile. Consider Listing 8-14 in
mock_sevices/routes/board-games.js. The board-
games.js �ile is appropriate as it includes all the endpoints related to
board games. The comments are on a board game.

01: var fs = require('fs');
02: var express = require('express');
03: var router = express.Router();
04:
05: router.get('/comments', function(req, res){
06: fs.readFile("data/comments.json",
{encoding: 'utf-8'}, function(err, data){
07: let comments = [];
08: if(err){
09: return console.log("error reading
from the file", err);
10: }
11: res.setHeader('Content-Type',
'application/json');
12: comments = JSON.parse(data);
13: comments =
Object.values(comments).filter(i => {

14:
15: return +i.gameId ===
+req.query.gameId
16: });
17: res.send(comments);
18: });
19: });

Listing	8-14 An Endpoint to Retrieve Comments

Consider the following explanation:
Line 5 creates an endpoint, which responds to an HTTP method, GET.
The get() function on the express router instance enables you to
create the endpoint.
Line 6 retrieves a current list of comments from a �ile on disk,
data/comments.json.
The readFile() function on the fs module (for “�ile system”) is
asynchronous. You provide a callback function, which is invoked as the
API successfully reads a �ile or errors out. In Listing 8-14, notice the
callback function between lines 6 and 18.
While the �irst parameter, err, represents an error, the second
parameter, data, contains the contents of the �ile. See lines 8 to 10. If
an error is returned, it is logged and returns the control out of the
function.
Assuming there are no errors reading the �ile, the �ile contents include
an entire list of comments belonging to all the games in the system.
The service is expected to return a comment only for the given game.
Hence, you �ilter the comments by game ID. See the code on lines 13 to
16, which creates a �ilter. The filter() function is de�ined on
JavaScript array objects. The predicate on line 15 tests each item in
the array. The comments with the given game ID are returned.
See line 17, which responds with the �iltered comments to the client
(e.g., browser).

Adding	Comments
The game details page allows users to comment, as shown in Figure 8-2.
The form has �ields for a username, a title, and a detailed comment. This

section details how to create a mock server-side service to save
comments.

Adding a comment is done through a create action. You are creating a
new comment entity. Remember, the POST method is appropriate to
create entities. A POST method has a request body, which includes a list
of comments created by the Angular application (typed in by an user).
See Figure 8-5.

Figure	8-5 The create comments endpoint

Consider Listing 8-15 in mock_sevices/routes/board-
games.js. The board-games.js �ile is appropriate as it includes all
the endpoints related to board games. Users are commenting on board
games.

01: var fs = require('fs');
02: var express = require('express');
03: var router = express.Router();
04:
05: router.post('/comments', function(req, res){
06: let commentsData = [];
07: try{

08: fs.readFile("data/comments.json",
{encoding: 'utf-8'}, function(err, data){
09: if(err){
10: return console.log("error
reading from the file", err);
11: }
12: commentsData =
commentsData.concat(JSON.parse(data));
13: commentsData =
commentsData.concat(req.body);
14:
15: fs.writeFile("data/comments.json",
JSON.stringify(commentsData), function(err){
16: if(err){
17: return console.log("error
writing to file", err);
18: }
19: console.log("file saved");
20: });
21: });
22: res.send({
23: status: 'success'
24: });
25: }catch(err){
26: console.log('err2', err);
27: res.sendStatus(200);
28: }
29: });

Listing	8-15 A POST Endpoint to Create Comments

Consider the following explanation:
Line 5 creates an endpoint, which responds to the HTTP POST
method. The post() function on the express router instance enables
you to create the endpoint.
The endpoint needs to append the new comments to the current list
of comments. The �ile data/comments.json has an array of the
current list of comments.

The readFile() function on the fs module is asynchronous. You
provide a callback function, which is invoked as the API successfully
reads a �ile or errors out. In Listing 8-15, notice the callback function
on lines 8 to 21.
While the �irst parameter, err, represents an error, the second
parameter, data, has contents of the �ile. See lines 9 to 11. If an error
is returned, it is logged and returns the control out of the function.
Assuming there is no error reading the �ile, line 12 adds comments in
the �ile to a local variable called commentsData.
Next, line 13 concatenates a new list of comments on the request
object to the commentsData variable. As mentioned earlier, the
POST method has a request body. It includes a list of comments
provided by the Angular application.
The consolidated list of comments are written back to the �ile. See line
15, which writes the entire list of comments to the �ile.

Summary
This chapter builds on the Web Arcade use case. It is crucial for
understanding the of�line function we will build in the next chapter. So
far, while working with data, you performed data retrieval and caching.
This chapter established a use case for the create, update, and delete
scenarios.

Exercise
The game details page just shows a title and a description for a
board game. However, the mock service and the TypeScript
interface include many additional �ields including origin, alternate
names, recommended number of players, etc. Include the
additional �ields on the game details page.
The add comment functionality shows a Snackbar component
message if the action is successful (see Listing 8-11, line 36). The
sample does not show a message for an error. Update the code
sample to show a Snackbar component alert for errors.
Implement a back button on the game details page to navigate back
to the list screen.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
V. K. Kotaru, Building	Of�line	Applications	with	Angular
https://doi.org/10.1007/978-1-4842-7930-4_9

9.	Creating	Data	Of�line
Venkata Keerti Kotaru1

-, Hyderabad, Telangana, India

Earlier in the book, we started integrating IndexedDB in an Angular application. We
also established a use case for creating data, namely, user comments, of�line.
Imagine that a user is on a game details page and attempts to add a comment.
However, the user loses network access. The Web Arcade application is resilient
because it saves the comments on the client device/browser temporarily. When the
user is back online, the application synchronizes the comments online.

This chapter elaborates on how to create data of�line. It begins with instructions
to identify if the application is online or of�line. You use the status to determine how
to reach server-side services or use the local IndexedDB store. Next, the chapter
details how to add a comment to IndexedDB when of�line. It details how to provide
feedback to the user that the application is of�line but the data is temporarily saved.

Then, the chapter covers how to synchronize of�line comments with the server-
side services once the application is back online. Remember, the server-side
database and the services are the source of truth for the data. IndexedDB is
temporary and provides a seamless experience to the user.

Adding	Comments	Online	and	Of�line
The previous chapter described how to add a comment. The submit action calls the
server-side HTTP endpoint. If the device is of�line and has lost network
connectivity, a typical web application shows an error. Once online, users might
have to retry the operation. As mentioned earlier, Web Arcade uses IndexedDB,
persists data temporarily, and synchronizes when the remote service is available.

Identifying	the	Online/Of�line	Status	with	a	Getter
To identify whether the device (and the browser) is online, use the JavaScript API
on the navigator object. It is a read-only property on the window object. The �ield
onLine returns the current status, which is true if online and false if of�line.

The developer tools on Google Chrome provide an option to throttle network
speeds. This helps applications evaluate their performance and user experience. See

https://doi.org/10.1007/978-1-4842-7930-4_9

Figure 9-1. The tools print the onLine �ield value on the navigator object. Notice
the browser window is throttled of�line.

Figure	9-1 Google Chrome Developer Tools, printing the onLine status on the console

Note You can run a similar command on a browser of your choice. Figure 9-1
shows Google Chrome, which was chosen arbitrarily.

Remember, we created a service called IdbStorageAccessService to
encapsulate access to IndexedDB. The online/of�line status determines the
components that can access IndexedDB. Hence, you should include lines of code to
determine the online/of�line status in the service.

Inject the Window service into IdbStorageAccessService, as shown in
Listing 9-1, line 3.

1: @Injectable()
2: export class IdbStorageAccessService {
3: constructor(
 private windowObj: Window) {
4: // this.create();
5: }
6: }

Listing	9-1 Inject the Window Service

Ensure the Window service is provided. See Listing 9-2, lines 10 and 15, in
AppModule for the Web Arcade application. You provide the Window service with
a global variable, window, as shown in line 14. This provides access to useful
properties such as document, navigator, etc.

01: @NgModule({
02: declarations: [
03: AppComponent,
04: // ...
05:],
06: imports: [
07: BrowserModule,
08: // ...
09:],
10: providers: [
11: IdbStorageAccessService,
12: {
13: provide: Window,
14: useValue: window
15: }
16:],
17: bootstrap: [AppComponent]
18: })
19: export class AppModule { }

Listing	9-2 Provide the Window Service

Create a getter function called IsOnline in IdbStorageAccessService. A
service instance may use the IsOnline �ield to get the status of the browser. The
code is abstracted in the service. See Listing 9-3.

1: get IsOnline(){
2: return this.windowObj.navigator.onLine;
3: }

Listing	9-3 IsOnline Getter as Part of IdbStorageAccessService

Adding	Online/Of�line	Event	Listeners
It is possible that you will encounter a scenario where an action needs to be
performed when the application goes online or of�line. The window object (and
hence the window service) provides the events online and offline. Add these
events to IdbStorageAccessService at the time of initialization. The event
handler callback function is invoked any time the event occurs.

Listing 9-4 prints a message on the browser console including the event data.
You can perform an action when an event is triggered. See speci�ically lines 8 to 11
and lines 13 to 16.

01: @Injectable()
02: export class IdbStorageAccessService {

03:
04: constructor(private windowObj: Window) {
05: }
06:
07: init() {
08: this.windowObj.addEventListener("online", (event)
=> {
09: console.log("application is online", event);
10: // Perform an action when online
11: });
12:
13: this.windowObj.addEventListener('offline',
(event)=> {
14: console.log("application is offline", event)
15: // Perform an action when offline
16: });
17: }
18: }

Listing	9-4 Online and Of�line Events

Figure 9-2 shows the results.

Figure	9-2 Online and of�line events

Adding	Comments	to	IndexedDB
Remember, when needed, we intend to cache comments in IndexedDB. Considering
IdbStorageAccessService abstracts the task of accessing the database from
the rest of the application, augment the service and add a function that caches
comments in IndexedDB. But before we do that, Listing 9-5 shows a quick recap of
the service so far.

01: @Injectable()
02: export class IdbStorageAccessService {
03:
04: idb = this.windowObj.indexedDB;
05:
06: constructor(private windowObj: Window) {
07: }
08:
09: init() {
10:
11: let request = this.idb.open('web-arcade', 1);
12:
13: request.onsuccess = (evt:any) => {
14: console.log("Open Success", evt);
15:
16: };
17:
18: request.onerror = (error: any) => {
19: console.error("Error opening IndexedDB", error);
20: }
21:
22: request.onupgradeneeded = function(event: any){
23: let dbRef = event.target.result;
24: let objStore = dbRef
25: .createObjectStore("gameComments", {
autoIncrement: true })
26:
27: let idxCommentId =
objStore.createIndex('IdxCommentId', 'commentId', {unique:
true})
28: };
29:
30: this.windowObj.addEventListener("online", (event)
=> {
31: console.log("application is online", event);
32: // Peform an action when online

33: });
34:
35: this.windowObj.addEventListener('offline', (event)
=> {
36: console.log("application is offline", event)
37: // Perform an action when offline
38: });
39:
40: }
41: }

Listing	9-5 IdbStorageAccessService

So far, the service creates a reference to IndexedDB, opens a new database, and
creates an object store and an index. Consider the following detailed explanation for
Listing 9-5:

In line 4, an IndexedDB reference is set on a class variable, namely, idb.
Next, in the init() function (which initializes the service and appears on line
11), run the open() function on the idb object. It returns an object of the
IDBOpenDBRequest object.
If this is the �irst time a user has opened the application on a browser, it creates a
new database.
 a. 

The �irst parameter is the name of the database, web-arcade.
 b. 

The second parameter (a value of 1) speci�ies a version for the database.
As you can imagine, new updates to the application cause changes to the
IndexedDB structure. The IndexedDB API enables you to upgrade the
database as the version changes.

For a returning user, the database was already created and available on a
browser. The open() function attempts to open the database.

1. The IndexedDB APIs are asynchronous. The open action does not complete in
line 11. You provide a function callback for the success and failure scenarios.
They are invoked as a result of the open action.
a.

Notice the onsuccess() function callback on lines 13 to 16, which is
invoked if the open database action is successful.

b.

The onerror() function callback on lines 18 to 20 is invoked if the open
database action fails.

c. The open function call returns IDBOpenDBRequest. The previous

callback functions onsuccess and onerror are provided to this returned

callback functions onsuccess and onerror are provided to this returned
object.

2.
See the code on lines 22 to 28, where onupgradeneeded is triggered after
creating or opening IndexedDB. You provide a callback function, which is
invoked by the browser when this event occurs. What is the signi�icance of the
onupgradeneeded event?

a.
In the case of a new database, the callback function is a good place to create
object stores. In the current use case, you create an object store to save
game comments. You name it gameComments.

b.
For a pre-existing database, if an upgrade is required, you may perform
design changes here.

3.
Finally, on lines 30 to 38, see the function callback for online and of�line events
when the browser goes online/of�line.

The Angular service IdbStorageAccessService needs a reference to the

web-arcade database . You use it to create a transaction. With IndexedDB, you
need a transaction to perform create, retrieve, update, and delete (CRUD)
operations. The statement on line 11, the this.idb.open('web-arcade',1)
function call, attempts to open a database, namely, web-arcade. If it’s successful,
you can access the database reference as part of the onsuccess() function
callback. Consider Listing 9-6.

01: @Injectable()
02: export class IdbStorageAccessService {
03:
04: idb = this.windowObj.indexedDB;
05: indexedDb: IDBDatabase;
06: init() {
07:
08: let request = this.idb.open('web-arcade', 1);
09:
10: request.onsuccess = (evt:any) => {
11: console.log("Open Success", evt);
12: this.indexedDb = evt?.target?.result;
13: };
14: }
15: }

Listing	9-6 Access the web-arcade Database Reference

Consider the following explanation:
See line 5. indexedDB is a class variable accessible across the service.
A value is assigned on the successful opening of the web-arcade database, as
shown on line 12. The database instance is available in the result variable on
the target property of the event object (event.target.result).

Next, add a function to create comments in IndexedDB. This creates an
IndexedDB transaction, accesses the object store, and adds a new record. Consider
Listing 9-7.

01: addComment(title: string, userName: string, comments:
string, gameId: number, timeCommented = new Date()){
02: let transaction = this.indexedDb
03: .transaction("gameComments", "readwrite");
04:
05: transaction.objectStore("gameComments")
06: .add(
07: {
08: title,
09: userName,
10: timeCommented,
11: comments,
12: gameId,
13: commentId: new Date().getTime()
14: }
15:)
16:
17:
18: transaction.oncomplete = (evt) =>
console.log("add comment transaction complete", evt);
19: transaction.onerror = (err) => console.log("add
comment transaction errored out", err);
20:
21: }

Listing	9-7 Add a New Record in IndexedDB

Consider the following explanation:
First, create a new transaction with the class variable indexedDB (created in
Listing 9-6). See the transaction function on line 3. It takes two parameters:
a.

 One or more object stores in which a transaction needs to be created. In
this case, you create a transaction on an object store gameComments.

b.  Specify the transaction mode, readwrite. IndexedDB supports three
modes of transactions, namely, readonly, readwrite, and
versionchange. As you can imagine, readonly helps with retrieve
operations, and readwrite helps with create/update/delete operations.
However, versionchange mode helps create and delete object stores on an
IndexedDB.

Next, perform the add record action on IndexedDB. Use the transaction object to
access the object store on which the add action needs to be performed. See line 5,
which uses the objectStore function to access the object store().
See lines 6 and 15. You store a JavaScript object including the �ields for the
comment title, username, time commented, comment description, game ID on
which the comment was added, and a unique comment ID. To ensure uniqueness,
you use a time value. You may use any unique value.
As you have seen with IndexedDB, the database actions are asynchronous. The
add() function does not immediately add a record. It eventually invokes a
success or error callback function. A transaction has the following callback
functions:
a.

 oncomplete: This is invoked on success. See line 18. It prints the status
on the console.

b.

 onerror: This is invoked on error. See line 19.
Figure 9-3 shows a record in IndexedDB.

Figure	9-3 A new record in IndexedDB

The	User	Experience	of	Adding	Comments
Remember from the previous chapter that UserDetailsComponent adds a
comment by calling the GameService function named addComments. This

invokes the server-side POST call to add a comment. If the application is of�line, it
will error out. You show an error feedback to the user and request the user to retry.

In this chapter, you have done the background work to cache comments in
IndexedDB, if the browser is of�line. Next, update the component to check if the
application is online or of�line and invoke the respective service function. Consider
the code snippet in Listing 9-8, which comes from GameDetailsComponent
(app/components/game-details/game-details.component.ts).

01: @Component({ /* ... */ })
02: export class GameDetailsComponent implements OnInit {
03:
04: constructor(private idbSvc:
IdbStorageAccessService,
05: private gamesSvc: GamesService,
07: private snackbar: MatSnackBar,
08: private router: ActivatedRoute) { }
09:
10: submitComment() {
11: if (this.idbSvc.IsOnline) {
12: this
13: .gamesSvc
14: .addComments(/* provide comment fields
*/)
15: .subscribe((res) => {
16:
17: this.snackbar.open('Add comment
successful', 'Close');
18: });
19: } else {
20: this.idbSvc.addComment(this.title,
this.name, this.comments, this.game.gameId);
21: this.snackbar.open('Application is offline.
We saved it temporarily', 'Close');
22: }
23: }
24: }

Listing	9-8 Add a Comment in the Game Details Component

Consider the following explanation:
At the beginning, inject IdbStorageAccessService. See line 4. The service
instance is named idbSvc.

Line 11 checks if the application is online. Notice that you use the IsOnline
getter created in Listing 9-3.
a.

 If true, continue to call the game service function, addComments(). It
invokes the server-side service.

b.

 If of�line, use the IdbStorageAccessService function
addComment(), which adds the comment to IndexedDB. See the
implementation in Listing 9-7.

Notice on line 21 that you show a Snackbar component message that the
application is of�line. Figure 9-4 shows the result.

Figure	9-4 Snackbar component alert indicating application is of�line

Synchronizing	Of�line	Comments	with	the	Servers
When the application is of�line, you cache the comments within the browser in
persistent storage using IndexedDB. Eventually, once the application is back online,
when the user launches the application again, the comments need to be
synchronized with the server side. This section details the implementation to
identify that the application is online and synchronize the comment records.

The two events online and offline on window objects are triggered when
the browser gains or loses connectivity. The IdbStorageAccessService
service includes event handlers for the online and offline events. See Listing 9-
4.

Next, update the online event handler. Consider the following steps to
synchronize the data with the server-side databases. When the application is back
online, you do the following:
1.

Retrieve all the cached comments from IndexedDB.
2.

Invoke a server-side HTTP service, which updates the primary database for the
user comments.

3.

Finally, clear the cache. Delete comments synchronized with the remote service.
Let’s begin with the �irst step in the previous list, retrieving all the cached

comments from IndexedDB. The following section details various options and the
available API to retrieve data from IndexedDB.

Retrieving	Data	from	IndexedDB
IndexedDB provides the following API for retrieving data:
getAll(): Retrieves all records in the object store

As mentioned earlier, the CRUD operations run in the scope of a transaction.
Hence, you will create a read-only transaction (considering it is a data retrieval
operation) on the object store. Call the getAll() API, which returns
IDBRequest, as shown in Listing 9-9.

On the IDBRequest object, provide the onsuccess and onerror callback
function de�initions. As you know, almost all IndexedDB operations are
asynchronous. The data retrieval with getAll() does not happen immediately. It
calls back the provided callback function.

1: let request = this.indexedDb
2: .transaction("gameComments", "readonly")
3: .objectStore("gameComments")
4: .getAll();
5:
6: request.onsuccess = resObject => console.log('getAll
results', resObject);
7: request.onerror = err => console.error('Error reading
data', err);

Listing	9-9 Using getAll()

See Figure 9-5 for the result. Notice the success handler on line 6 in Listing 9-9.
The result variable is named resObject. Result records are available on a result
object on the target property on the resObject
(resObject.target.result).

Figure	9-5 The getAll() result

get(key): Retrieves a record by key. The get() function is run on an object
store.

Similar to getAll(), create a read-only transaction for get() on the object
store. The get() API returns IDBRequest, as shown in Listing 9-10.

Rest of the code handling the result or an error is the same. On the
IDBRequest object, provide the onsuccess and onerror callback function
de�initions. As you know, almost all IndexedDB operations are asynchronous. The
data retrieval with get() does not happen immediately. It calls back the provided
callback function.

1: let request = this.indexedDb
2: .transaction("gameComments", "readonly")
3: .objectStore("gameComments")
4: .get(30);
5:
6: request.onsuccess = resultObject => console.log('get()
results', resultObject);
7: request.onerror = err => console.error('Error reading
data', err);

Listing	9-10 Using get()

Notice the success handler on line 6 in Listing 9-10. The result variable is named
resultObject. Result records are available on a result object on the target

property on the resultObject (resultObject.target.result).

openCursor(): A cursor allows you to iterate through the results. It lets you act
on one record at a time. We chose this option for the comments use case. It
provides �lexibility to transform the data format as and when you read from
IndexedDB. The other two APIs, getAll() and get(), require an additional
code loop to transform the data.

As mentioned earlier, the CRUD operations run in the scope of a transaction.
Hence, you will create a read-only transaction (considering it is a data retrieval
operation) on the object store. Call the openCursor() API, which returns
IDBRequest.

Again, code handling the result or an error remains the same. On the
IDBRequest object, provide the onsuccess and onerror callback function
de�initions. The data retrieval with openCursor() is asynchronous, which
invokes above mentioned onsuccess or onerror callback functions.

Create a new private function to retrieve the cached comment records. Provide
an arbitrary name of getAllCachedComments(). Add the private function
shown in Listing 9-11 in IdbStorageAccessService.

01: private getAllCachedComments() {
02: return new Promise(
03: (resolve, reject) => {
04: let results: Array<{
05: key: number,
06: value: any
07: }> = [];
08:
09: let query = this.indexedDb
10: .transaction("gameComments", "readonly")
11: .objectStore("gameComments")
12: .openCursor();
13:
14: query.onsuccess = function (evt: any) {
15:
16: let gameCommentsCursor =
evt?.target?.result;
17: if(gameCommentsCursor){
18: results.push({
19: key: gameCommentsCursor.primaryKey,
20: value: gameCommentsCursor.value
21: });
22: gameCommentsCursor.continue();
23: } else {

24: resolve(results);
25: }
26: };
27:
28: query.onerror = function (error: any){
29: reject(error);
30: };
31:
32: });
33: }

Listing	9-11 Retrieve Cached Comments from IndexedDB

Consider the following explanation:
The function creates and returns a promise. See line 2. Considering the data
retrieval is asynchronous, you cannot instantly return comment records from the
getAllCachedComments() function . The promise is resolved once the cursor
�inishes retrieving data from IndexedDB.
Lines 9 and 12 create a read-only transaction, access object store
gameComments, and open a cursor. This statement returns an IDBRequest
object, which is assigned to a local variable query.
Remember, the onsuccess callback is invoked if the cursor is able to retrieve
data from the object store. Otherwise, the onerror callback is invoked (lines 28
and 30).
See onsuccesscallback() de�ined in lines 14 to 26.
Access the results at event.target.result. See line 16.

Note The ?. syntax in evt?.target?.result performs a null check. If a
property is unde�ined, it will return null, instead of throwing an error and
crashing the entire function work�low. The previous statement may return the
results or null.

If the results are de�ined, transform the data to key-value pair format. Add the
object to a local variable called result.
Remember, the cursor works on a single comment record at a time (unlike get()
and getAll()). To move the cursor to the next record, call the continue function
on the query object. Remember, the query object is an IDBRequest object
returned by openCursor().
The if condition on line 17 results in a true value until all the records in the
cursor are exhausted.
When false, as the entire dataset (comment records) is retrieved and added to the
local variable result, resolve the promise. The calling function uses the results

successfully resolved from getAllCachedComments() .

This completes the �irst step among the three described earlier, listed here:
1.

Retrieve	all	the	cached	comments	from	the	IndexedDB.
Next, let’s proceed to the other two steps:

2.

Invoke a server-side HTTP service, which updates the primary database for the
user comments.

3.

Finally, clear the cache. Delete comments synchronized with the remote service.
Bulking	Updating	Comments	on	the	Server	Side
A user might have added multiple comments while the application was of�line. It is
advisable to upload all the comments in a single call. The server-side HTTP POST
endpoint /comments accepts an array of comments.

Remember, the Angular service GameService
(src/app/common/game.service.ts) encapsulates all the game-related
service calls. Add a new function, which accepts an array of comments and makes
an HTTP POST call. Similar to earlier service calls, the new function uses an
HttpClient object to make a post call. See Listing 9-12 for the new function
addBulkComments (the function name is arbitrary). See lines 9 and 18.

02: @Injectable({
03: providedIn: 'root'
04: })
05: export class GamesService {
06:
07: constructor(private httpClient: HttpClient) { }
08:
09: addBulkComments(comments: Array<{title: string,
10: userName: string,
11: comments: string,
12: gameId: number,
13: timeCommented: Date}>){
14: return this
15: .httpClient
16: .post(environment.commentsServiceUrl, comments);
17:
18: }
19: }

Listing	9-12 Add Bulk Comments

Note The function addBulkComments() uses anonymous data type as a
parameter. The comments variable is of type Array<{title: string,
userName: string, comments: string, gameId: number,
timeCommented: Date}>. The highlighted type is without a name. You may
use this technique for one-off data types.

You may choose to create a new entity and use it.

The service function is now available, but it has not been called yet. However, you
have the service function available to bulk update the cached comments. Before we
start using this function, consider adding a function to delete.

This completes the second step as well. Now you have the code to retrieve
cached comments from IndexedDB and call a server-side service for synchronizing
the of�line comments.
1.

Retrieve	all	the	cached	comments	from	the	IndexedDB.
2.

Invoke	a	server-side	HTTP	service,	which	updates	the	primary	database
for	the	user	comments.

3.

Finally, clear the cache. Delete comments synchronized with the remote service.
Next, add code to clean up IndexedDB.

Deleting	Data	from	IndexedDB
IndexedDB provides the following API for deleting data from IndexedDB:
delete(): Removes records in the object store. This selects the record to be
deleted by its record ID.

As mentioned earlier, the CRUD operations run in the scope of a transaction.
Hence, you will create a read-write transaction on the object store. Call the
getAll() API, which returns IDBRequest.

On the IDBRequest object, provide the onsuccess and onerror callback
function de�initions. As mentioned earlier, almost all IndexedDB operations are
asynchronous. The delete operation does not happen immediately. It calls back the
provided callback function, as shown in Listing 9-13. Notice that it returns a
promise. The promise is resolved if the delete action is successful. See line 10. If it
fails, the promise is rejected. See line 14.

01: deleteComment(recordId: number){
02: return new Promise((resolve, reject) => {
03: let deleteQuery = this.indexedDb
04: .transaction("gameComments", "readwrite")

05: .objectStore("gameComments")
06: .delete(recordId);
07:
08: deleteQuery.onsuccess = (evt) => {
09: console.log("delete successful", evt);
10: resolve(true);
11: }
12: deleteQuery.onerror = (error) => {
13: console.log("delete successful", error);
14: reject(error);
15: }
16: });
17: }

Listing	9-13 Using delete()

Include the previous function in IdbStorageAccessService. Remember,
this service encapsulates all actions related to IndexedDB. Now, you have the code
for all three steps described for synchronizing of�line comments.
1.

Retrieve	all	the	cached	comments	from	the	IndexedDB.
2.

Invoke	a	server-side	HTTP	service,	which	updates	the	primary	database
for	the	user	comments.

3.

Finally,	clear	the	cache.	Delete	comments	synchronized	with	the	remote
service.

Notice that these service functions are available, but they are not yet triggered

when the application comes back online. Earlier in the chapter, the service
IdbStorageAccessService includes an event handler for the online event . It
is called when the application comes back online. Update this event handler to
synchronize of�line comments. Consider Listing 9-14 to be updated in
IdbStorageAccessService.

01: this.windowObj.addEventListener("online", (event) => {
02: this.getAllCachedComments()
03: .then((result: any) => {
04: if (Array.isArray(result)) {
05: let r =
this.transformCommentDataStructure(result);
06: this
07: .gameSvc
08: .addBulkComments(r)

09: .subscribe(
10: () => {
11: this.deleteSynchronizedComments(result);
12: },
13: () => ({/* error handler */})
14:);
15: }
16: });
17: });

Listing	9-14 The Online Event Handler

Consider the following explanation:
First, you retrieve all cached comments. See line 2, which calls the
getAllCachedComments() service function. See Listing 9-11 to review
retrieving cached comments from IndexedDB.
The function returns a promise. When the promise is resolved, you have access to
the comment records from IndexedDB. You use this data to add comments in the
back end, synchronizing server-side services and databases.
Before you call the server-side service, transform the comment record to the
request object structure. You loop through all the comments and change the �ield
names as required by the server-side service.
a.

 Listing 9-15 de�ines a private function called
transformCommentDataStructure() . Notice the forEach() on the
array of comments obtained from the IndexedDB object store. The comments
are transformed and added to a local variable, comments. This is returned at
the end of the function.

Next call the GameService function addBulkComments() , which in turn
calls the server-side service. To review the addBulkComments() function, see
Listing 9-12.
Remember, the function addBulkComments() returns an observable. You
subscribe to the observable, which has handlers for success and failure. The
success handler indicates the comments are added/synchronized with the server
side. Hence, you can now delete cached comments in IndexedDB.
Invoke a private function deleteSynchronizedComments() de�ined as part
of the service IdbStorageAccessService. It loops through each comment
record and deletes the comments from the local database. See Listing 9-16 for the
deleteSynchronizedComments() function de�inition.

a.  Notice that the forEach loop uses an anonymous type with a key-value
pair. See line 3 (r: {key: number; value: any}). It de�ines the
expected structure for the comments data.

b.
 deleteComment() deletes each record by its ID. To review the function
again, see Listing 9-13.

01: private transformCommentDataStructure(result:
Array<any>){
02: let comments: any[] = [];
03: result?.forEach((r: {key: number; value: any}) =>
{
04: comments.push({
05: title: r.value.title,
06: userName: r.value.userName,
07: comments: r.value.comments,
08: gameId: r.value.gameId,
09: timeCommented: new Date()
10: });
11: });
12: return comments ;
13: }

Listing	9-15 Transform Comments Data

1: private deleteSynchronizedComments(result: Array<any>){
2: result
3: ?.forEach((r: {key: number; value: any}) =>
this.deleteComment(r.key));
4: }

Listing	9-16 Delete Synchronized Comments

Now, you have synchronized of�line comments with the server side. See Listing
9-17, which includes the event handler for handling the online event and private
functions that orchestrate the synchronization steps.

01: @Injectable()
02: export class IdbStorageAccessService {
03:
04: idb = this.windowObj.indexedDB;
05: indexedDb: IDBDatabase;
06:
07: constructor(private gameSvc: GamesService, private
windowObj: Window) {
08: }
09:

10: init() {
11: let request = this.idb
12: .open('web-arcade', 1);
13:
14: request.onsuccess = (evt:any) => {
15: this.indexedDb = evt?.target?.result;
16: };
17:
18: request.onupgradeneeded = function(event: any){
19: // Create object store for game comments
20: };
21:
22: this.windowObj.addEventListener("online", (event) =>
{
23: console.log("application is online", event);
24: this.getAllCachedComments()
25: .then((result: any) => {
26: if (Array.isArray(result)) {
27: let r =
this.transformCommentDataStructure(result);
28: this
29: .gameSvc
30: .addBulkComments(r)
31: .subscribe(
32: () => {
33: this.deleteSynchronizedComments(result);
34: },
35: () => ({/* error handler */})
36:);
37: }
38: });
39: });
40:
41: this.windowObj.addEventListener('offline', (event)
=> console.log("application is offline", event));
42:
43: }
44:
45: private deleteSynchronizedComments(result: Array<any>)
{
46: result?.forEach((r: {key: number; value: any}) => {
47: this.deleteComment(r.key);
48: });

49: }
50:
51: private transformCommentDataStructure(result:
Array<any>){
52: let comments: any[] = [];
53: result?.forEach((r: {key: number; value: any}) =>
{
54: comments.push({
55: title: r.value.title,
56: userName: r.value.userName,
57: comments: r.value.comments,
58: gameId: r.value.gameId,
59: timeCommented: new Date()
60: });
61: });
62: return comments ;
63: }
64:
65: deleteComment(recordId: number){
66: // Code in the listing 9-13
67: }
68:
69: private getAllCachedComments() {
70: // Code in the listing 9-11
71: }
72:
73: }

Listing	9-17 Synchronized Comments with Online Event Handler

Updating	Data	in	IndexedDB
IndexedDB provides the following API for updating data in IndexedDB:
put(): Updates records in the object store. This selects the record to be updated
by its record ID.

As mentioned earlier, the CRUD operations run in the scope of a transaction.
Hence, you will create a read-write transaction on the object store. Call the put()
API, which returns IDBRequest.

On the IDBRequest object, provide the onsuccess and onerror callback
function de�initions. As mentioned, almost all IndexedDB operations are
asynchronous. The data retrieval with put() does not happen immediately. It calls
back the provided callback function, as shown in Listing 9-18.

01: updateComment(recordId: number, updatedRecord:
CommentEntity){
02: /* let updatedRecord = {
03: commentId: 1633432589457,
04: comments: "New comment data",
05: gameId: 1,
06: timeCommented: 'Tue Oct 05 2021 16:46:29
GMT+0530 (India Standard Time)',
07: title: "New Title",
08: userName: "kotaru"
09: } */
10:
11: let update = this.indexedDb
12: .transaction("gameComments", "readwrite")
13: .objectStore("gameComments")
14: .put(updatedRecord, recordId);
15:
16: update.onsuccess = (evt) => {
17: console.log("Update successful", evt);
18: }
19: update.onerror = (error) => {
20: console.log("Update failed", error);
21: }
22: }

Listing	9-18 Update Records in IndexedDB

Consider the following explanation:
You create a new function to update comments. Imagine a form that allows users
to edit a comment. The previous function can perform this action.

Note The current use case does not include an edit comment use case.
The previous function is for demonstrating the put() API on IndexedDB.

Notice the commented lines of code between lines 2 and 9. This provides an
arbitrary structure for updated comment data. However, the calling function
provides the updated comment in an updatedRecord variable.
See line 14. The put function takes two parameters.
a.

 updatedRecord: This is the new object to replace the current one.
b.

 recordId: This identi�ies the record to be updated by the second
parameter, recordId.

Summary
This chapter provided an elaborate explanation for adding records to IndexedDB. In
the Web Arcade use case with the game details page, the application allows users to
add comments of�line. The data is temporarily cached in IndexedDB, which is
eventually synchronized with server-side services.

Exercise
You have seen how to use the put() API to update a record in IndexedDB. Add
the ability to edit comments. If the application is of�line, provide the ability to
temporarily save edits in IndexedDB.
Notice that the deleteComment() function deletes records one at a time.
Provide error handling to identify and correct failures.
Provide a visual indicator when the application is of�line. You may choose to
change the color of the toolbar and the title.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2022
V. K. Kotaru, Building	Of�line	Applications	with	Angular
https://doi.org/10.1007/978-1-4842-7930-4_10

10.	Dexie.js	for	IndexedDB
Venkata Keerti Kotaru1

-, Hyderabad, Telangana, India

So far, you have seen use cases and implementations for using a database on the client side. You learned
about and implemented IndexedDB. The browser API enables you to create a database, performing
create/retrieve/update/delete (CRUD) operations. The functions are native to the browser. All the latest
versions of the major browsers support IndexedDB. However, arguably, the IndexedDB API is complex. An
everyday developer might need a simpli�ied version.

Dexie.js is a wrapper for IndexedDB. It is a simple and easy-to-use library that is installable in your
application. It is an open source repository with an Apache 2.0 license. The license allows commercial use,
modi�ications, distribution, patent use, and private use. However, it has limitations with respect to
trademark use and has no liability and warranty. Understand the agreement better while using the library
for a business application you might be working on.

The chapter is an introduction to Dexie.js. It provides an overview of the library within the parameters of
the Web Arcade use cases. It begins with instructions to install Dexie.js in the Web Arcade application. Next,
it details how to use the library among TypeScript �iles. You create a new class and a service to encapsulate
data access logic to IndexedDB using Dexie.js. The chapter also details how to create transactions,
performing CRUD operations on the data. Toward the end, the chapter lists a few additional libraries and
wrappers on top of IndexedDB.

Installing	Dexie.js
Install the Dexie package.

npm i -S dexie
or
yarn add dexie

Note The command npm i -S dexie is a short form of npm install --save dexie.
-S or --save is an option to add Dexie to the Web Arcade package. An entry will be added to

package.json. This will ensure that future installs include Dexie.
Yarn does not need this option. It is implicit; it will always add the package to Web Arcade.

Web	Arcade	Database
Create a TypeScript class encapsulating the Web Arcade IndexedDB connection. Use this class to access the
IndexedDB database web-arcade with the Dexie API. Run this command to create a TypeScript class:

ng generate class common/web-arcade-db

Use the class WebArcadeDb to specify the IndexedDB database to create and connect. You will also use
this class to de�ine object stores, indexes, etc. Add the code shown in Listing 10-1 to the new class
WebArcadeDb.

01: import { Dexie } from 'dexie';
02: import { CommentsEntity } from './board-games-entity';

https://doi.org/10.1007/978-1-4842-7930-4_10

03:
04: const WEB_ARCADE_DB_NAME = 'web-arcade-dexie';
05: const OBJECT_STORE_GAME_COMMENTS = 'gameComments';
06: export class WebArcadeDb extends Dexie {
07: comments: Dexie.Table<CommentsEntity>;
08:
09: constructor() {
10: super(WEB_ARCADE_DB_NAME);
11: this.version(1.0).stores({
12: gameComments: '++IdxCommentId,timeCommented,userName'
13: });
14: this.comments = this.table(OBJECT_STORE_GAME_COMMENTS);
15: }
16: }

Listing	10-1 A TypeScript Class for the Web Arcade DB

Consider the following explanation:
Line 6 creates a new TypeScript class, WebArcadeDb. It extends the Dexie class, which provides many
out-of-the-box features including opening a database, creating stores, etc.
Notice that the Dexie class is imported from the dexie ES6 module (part of the Dexie library) on line 1.
Provide the web-arcade database name to the superclass. See line 10, the �irst line in the constructor. In
this code sample, the TypeScript class WebArcadeDb is dedicated to one IndexedDB, web-arcade. The
database name is assigned to a constant on line 4. It is used while opening a connection to the database.

Object	Store/Table
Consider the following explanation that details how to use the stores() and table() APIs between lines
11 and 14:

The constructor also de�ines the object store structure. In the current example, it creates a single store
called gameComments. See the string value in line 5. You may create additional object stores by including
additional �ields in the JSON object. It is passed in as a parameter to the stores() function.
The gameComments object store de�ines two �ields, IdxCommentId and timeCommented.
You pre�ix (or post�ix) ++ on the primary key. This �ield identi�ies each comment uniquely. It auto-
increments for each record added to the object store.
The object store includes one or more �ields. In this example, the object store includes two �ields:
timeCommented and userName. This statement creates the object store with the listed �ields.
While inserting records into the object store, you may include many more �ields. However, indexes are
created only on the �ields speci�ied with the stores() API (line 12). A query is limited to the �ields
indexed with the object store. Hence, include any �ield that you may query in the future.
Notice that the stores function is in a version() API, which de�ines a version for the Web Arcade
IndexedDB. As you will see in the next section, you may create additional versions of the database and
upgrade.
Dexie uses a TypeScript class called Table to refer to an object store. See line 7 for the class variable
comments. You create the variable of type Table (Dexie.Table).
Notice a generic type CommentsEntity passed to the Table class. The class variable comments is
con�ined to the interface CommentsEntity. Remember, the comment entity includes all the �ields
related to a user comment. Revisit CommentsEntity on src/app/common/comments-entity.ts.
See Listing 10-2.
Next, see line 14. The this.table() function returns an object store reference. The table() function
is inherited from the parent classes. Notice that you provide an object store name to the table()
function. It uses the name to return that particular object store, for example, a gameComments object
store.
The returned object store is set to the class variable comments. Accessing this variable on the
WebArcadeDb instance refers to the object store gameComments. For example,

webArcadeDbObject.comments refers to the gameComments object store.

1: export interface CommentsEntity {
2: IdxCommentId?: number;
3: title: string;
4: comments: string;
5: timeCommented: string;
6: gameId: number;
7: userName:string;
8: }

Listing	10-2 Comments Entity

IndexedDB	Versions
As your application evolves, anticipate changes to the database. IndexedDB supports versions to transition
between the upgrades. Dexie uses the underlying API and provides a clean way to version IndexedDB.

Listing 10-3 creates the web-arcade database with one object store and three �ields (one primary key
and two indexes). See line 12. Imagine you need to add an additional �ield gameId to the index and create a
new object store for board game comments.

Before you make this database change, increment the version number. Consider updating it to 1.1.

Note In version number 1.0, the number before the decimal point is called the major	version. The
number after the decimal point is the minor	version. As the names indicate, consider updating the major
version number if there is a major change to the database structure. For a minor addition of a single �ield,
index, or object store, update the minor version.

Next, add a new index for gameId. Include a new object store called boardGameComments with a primary
key, commentId. Consider Listing 10-3. See Figure 10-1 for the result. This is an IndexedDB view using
Google Chrome Developer Tools.

1: this.version(1.1).stores({
2: gameComments: '++IdxCommentId,timeCommented, userName, gameId',
3: boardGameComments: '++commentId'
4: });

Listing	10-3 Upgrade Web Arcade to a New Version

Figure	10-1 New object store, index on version 11 (1.1)

Next, consider a scenario where you need to delete an object store and remove an index. Consider
removing the index on the username and deleting the boardGameComments object store. Follow these
instructions:
1.

Update the version number. Consider using 1.2. This will translate to 12 on the IndexedDB.
2.

Set the object store to be deleted to null. In the current example, set boardGameComments to null. See
line 3 in Listing 10-4.

3.

To make changes to an object store, use the upgrade() API on the database object. In the current
example, we remove an index called userName on the object store gameComments and provide a
callback function. The function parameter is a reference variable to the database. Consider Listing 10-4.

1: this.version(1.2).stores({
2: gameComments: '++IdxCommentId,timeCommented, userName, gameId',
3: boardGameComments: null
4: }).upgrade(idb =>
5: idb.table(OBJECT_STORE_GAME_COMMENTS)
6: .toCollection()
7: .modify(comments => {
8: delete comments.userName;
9: }));

Listing	10-4 Remove Object Store and Index

Line 8 deletes the user on the comments object. The comments reference is obtained while modifying
the object store gameComments. Remember, Dexie’s table class (and the instance) refers to an object
store.

Connecting	with	Web-Arcade	IndexedDB
Remember the thought process creating the IdbStorageAccessService. It abstracts the IndexedDB API
from the rest of the application. If you choose to use Dexie instead of the native browser API, follow a similar
approach and create a service. Run the following command to create a service. Provide the arbitrary name
dexie-storage-access to the service.

ng g s common/dexie-storage-access

Note The command ng g s common/dexie-storage-access is a short form of ng generate
service common/dexie-storage-access.

g-	generate

s-	service

Similar to IdbStorageAccessService, initialize the DexieStorageAccessService at application
startup. Include an init() function with the code to initialize. Use Angular’s APP_INITIALIZER and
include it in the AppModule. Consider Listing 10-5. See lines 11 to 16. Notice that the app initializer invokes
the init() function (line 13).

01: @NgModule({
02: declarations: [
03: AppComponent,

04: /* More declarations go here */
05:],
06: imports: [
07: BrowserModule,
08: /* additional imports go here */
09:],
10: providers: [
11: {
12: provide: APP_INITIALIZER,
13: useFactory: (svc: DexieStorageAccessService) => () =>
svc.init(),
14: deps: [DexieStorageAccessService],
15: multi: true
16: }
17: /* More providers go here */
18:],
19: bootstrap: [AppComponent]
20: })
21: export class AppModule { }

Listing	10-5 Initialize DexieStorageAccessService at Application Startup

Initializing	IndexedDB
DexieStorageAccessService initializes IndexedDB using an instance of the WebArcadeDB class
(created in Listing 10-3). Use the open() function, which opens a connection to the database if it already
exists. If not, it will create a new database and open the connection. Consider Listing 10-6.

01: import { Injectable } from '@angular/core';
02: import { WebArcadeDb } from 'src/app/common/web-arcade-db';
03: import { CommentsEntity } from 'src/app/common/comments-entity';
04:
05: @Injectable({
06: providedIn: 'root'
07: })
08: export class DexieStorageAccessService {
09: webArcadeDb = new WebArcadeDb();
10: constructor() {}
11: init(){
12: this.webArcadeDb
13: .open()
14: .catch(err => console.log("Dexie, error opening DB"));
15: }
16: }

Listing	10-6 Dexie Storage Access Service

Consider the following explanation:
Create a new class-level instance of WebArcadeDb and instantiate. It encapsulates the Web Arcade
IndexedDB. See line 9 in Listing 10-9.
Remember that you invoked the init() function from the app module with the help of
APP_INITIALIZER. Notice the de�inition on lines 11 to 15. This initializes by invoking open() on the
IndexedDB. As mentioned earlier, it creates a database for Web Arcade if it doesn’t exist. It will open a
connection to IndexedDB.
After initialization, the IndexedDB is open for the database operations including CRUD.
The open function returns a promise. If it fails, the promise is rejected. Notice line 14. This is an error
handling statement when the promise is rejected. In the current example, you log a message and the error

to the browser console.

Transactions
It is important to include database operations in a transaction. A transaction ensures all enclosed operations
are atomic, that is, performed as a single unit. Either all the operations are performed or none is performed.
This is useful to ensure the consistency of the data.

In an example, imagine you are transferring data from object store 1 to object store 2. You read and
deleted data from object store 1. Imagine the user closed the browser before the update to object store 2 is
complete. Without a transaction, data is lost. A transaction ensures the deletion from object store 1 is
reverted if there is a failure before adding the data to object store 2. This ensures data is not lost.

Create a transaction on a WebArcadeDb object, as shown in Listing 10-7.

1: this.webArcadeDb.transaction("rw",
2: this.webArcadeDb.comments,
3: () => {
4:
5: })

Listing	10-7 Create a Transaction

Consider the following explanation:
See line 1. A transaction is created on an instance of the WebArcadeDb object. It is a class-level variable
on DexieStorageAccessService.
The �irst parameter on the transaction function is a transaction mode. Two values are possible.
Read: The value to the �irst parameter is r. The transaction can only perform read operations.
Read-Write: The value of the �irst parameter is rw. See line 1 in Listing 10-10. The transaction can
perform read and write operations.

The second parameter is an object store reference. See line 2. The comments �ield points to the object
store gameComments. See line 14 in Listing 10-3.
You may include more than one object stores in a transaction.
The �inal parameter is a function callback. It includes code to perform create, retrieve, update, or delete
operations on a database.

Add
Remember , so far, that you created an object store called gameComments. Listing 10-8 adds a record to the
object store.

01: addComment(title: string, userName: string, comments: string, gameId: numb
timeCommented = new Date()){
02: this.webArcadeDb
03: .comments
04: .add({
05: title,
06: userName,
07: timeCommented:
`${timeCommented.getMonth()}/${timeCommented.getDate()}/${timeCommented.getFul
08: comments,
09: gameId,
10: })
11: .then(id => console.log(`Comment added successfully. Comment Id is
12: .catch(error => console.log(error))
13: ;
14: }

Listing	10-8 Add a Comment Record to the Object Store

Consider the following explanation:
See line 2. You use an instance of the WebArcadeDb object. It is a class-level variable on
DexieStorageAccessService.
The add() function inserts a record into the object store (line 4). The record includes various comment
�ields including the title, username, comment date and time, comment description, and ID of the game on
which the comment is added.
The add() function returns a promise. If the add action is successful, the promise is resolved. See line 11,
which logs the comment ID (primary key) to the browser console. If the add action fails, the promise is
rejected. The catch() function on line 12 runs, which prints the error information on the browser
console.

Delete
Perform the delete action by using the database object, webArcadeDb. Call the delete() API on the
database. It needs a comment ID, the primary key as an input parameter. Consider Listing 10-9.

1: deleteComment(id: number){
2: return this.webArcadeDb
3: .comments
4: .delete(id)
5: .then(id => console.log(`Comment deleted successfully.`))
6: .catch(err => console.error("Error deleting", err));
7: }
8:

Listing	10-9 Delete a Comment Record in the Object Store

Consider the following explanation:
See line 2. You use an instance of the WebArcadeDb object. It is a class-level variable on
DexieStorageAccessService.
The delete() function deletes a record from the object store (line 4). The record to be deleted is
identi�ied by the comment ID, a primary key.
The delete() function returns a promise. If the delete action is successful, the promise is resolved. See
line 5, which logs a success message to the browser console. If the delete action fails, the promise is
rejected. The catch() function on line 6 runs, which prints the error information on the browser
console.

Update
Perform the update action by using the database object, webArcadeDb. Call the update() API on the
database. It needs a comment ID, which is the primary key, as the �irst input parameter. It selects the record
to be updated using the comment ID. It uses an object with a key path and a new value to be updated.
Consider Listing 10-10.

1: updateComment(commentId: number, newTitle: string, newComments: string){
2: this.webArcadeDb
3: .comments
4: .update(commentId, {title: newTitle, comments: newComments})
5: .then(result => console.log(`Comment updated successfully. Updated
record ID is ${result}`))
6: .catch(error => console.error("Error updating", error));
7: }

Listing	10-10 Update a Comment Record

Consider the following explanation:
See line 2. You use an instance of the WebArcadeDb object. It is a class-level variable on
DexieStorageAccessService.
The update() function updates a record on the object store (line 4). The record to be updated is
identi�ied by the comment ID, a primary key. The second parameter is an object with key-value pairs of
the values to be updated. Notice that a key identi�ies the �ield to be updated on the record, in the object
store.
For example, the following code snippet updates a record with the comment ID 1, a primary key. The next
two parameters are the new title and description, respectively.

 this.updateComment(1, "New title", "new comment description");

Figure 10-2 shows the result.

Figure	10-2 Update result

The update() function returns a promise. If the update action is successful, the promise is resolved. See
line 5, which logs a success message to the browser console. If the update action fails, the promise is
rejected. The catch() function on line 6 runs, which prints the error information on the browser
console.

Note The update() function updates speci�ic �ields on a record in an object store. To replace the
entire object, use put().

Retrieve
Dexie provides a comprehensive list of functions to query and retrieve data from IndexedDB. Consider the
following:
get(id): Selects a record in the object store using an ID/primary key. The ID is passed in as a parameter.
The get() function returns a promise. On successful get, the then() callback function returns results.
bulkGet([id1, id2, id3]): Selects multiple records in the object store. IDs are passed in as a
parameter. The bulkGet() function returns a promise. On a successful get, the then() callback
function returns results.
where({keyPath1:value, keyPath2: value…, keyPath: value}): Filters records by �ields
speci�ied with keyPath and the given value.
each(functionCallback): Iterates through the objects in an object store. The API invokes the
provided function callback asynchronously. Consider Listing 10-11.

1: getAllCachedComments(){
2: this.webArcadeDb
3: .comments
4: .each((entity: CommentsEntity) => {
5: console.log(entity);
6: })
7: .catch(error => console.error("Error updating", error));
8: }
9:

Listing	10-11 Get All Cached Comments from the gameComments Object Store

Consider the following explanation:
Line 2 uses an instance of the WebArcadeDb object. It is a class-level variable on
DexieStorageAccessService.
Line 4 iterates through each record in the gameComments object store.
The callback function uses the parameter of type CommentsEntity. As and when the callback is invoked
asynchronously, data con�ining to the CommentsEntity interface is expected to be returned.
Line 5 prints the entity to the browser console .

More	Options
In this book, you have seen the IndexedDB API supported natively by the browser. This chapter provided an
introduction to Dexie.js, a wrapper intended to simplify access to the database.

The following are a few additional options to consider. While the implementation details are out of the
scope of this book, consider reading and learning further about these libraries. All these libraries use
IndexedDB underneath.

Local	Forage: This provides simple API and functions. The API is similar to local storage. On the legacy
browsers that do not support IndexedDB, Local Forage provides a poly�ill. It has the ability to fall back to
WebSQL or local storage. It is an open source library with an Apache 2.0 license.
ZangoDB: This provides a simple and easy-to-use API that mimics MongoDB. The library uses IndexedDB.
The wrapper pro�iles an easy API for �iltering, sorting, aggregation, etc. It is an open source library with an
MIT license.
JS	Store: This provides Structured Query Language (SQL) like API for IndexedDB. It provides all the
features IndexedDB provides in an easy-to-understand API similar to traditional SQL. It is an open source
library with an MIT license.
PouchDB: This provides an API to synchronize client-side, of�line data with CouchDB. It’s a highly useful
library for applications using a CouchDB server-side back end. It is an open source library with an Apache
2.0 license.

Summary
This chapter introduced Dexie.js. It provided a basic understanding of the library within the parameters of
the Web Arcade use cases. It listed instructions to install the Dexie.js NPM package to the web arcade
application.

Also, the chapter listed a few additional libraries and wrappers on top of IndexedDB. While the
implementation details are out of scope of this book, it lists the names and one-liner introduction for further
learning.

Exercise
Update the game details component to use the Dexie storage access service for caching comments
while the application is of�line.
Update the online event to use the Dexie storage access service to retrieve records when the
application returns online. Integrate with the server-side service to synchronize the data and delete
local records using the Dexie.js API.
Provide the ability to update a comment using the Dexie storage access service.

Addendum
Please read this addendum for a few minor details that did not �it into
the Web Arcade use case descriptions of the book. We begin by
detailing how to create a proxy for accessing the mock services (in the
Angular application). The code sample already comes with the proxy
con�igured. However, this section explains the purpose and
implementation details.

The code sample for rolling a die was enhanced by launching in a
bottom sheet, so we also detail how to use a bottom sheet in the Web
Arcade application.

Also, we cover the hash location strategy using the traditional
approach for routing in a single-page application. Hash routing pre�ixes
the Angular route with a hash (#). Please note that it is advisable to
stick to the default strategy used so far in the book. However, with the
current con�iguration of Http-Server (a developer-class Node.js web
server), the code samples do not work if you refresh the page. It forces
you to start over from the beginning. Addendum provides hash routing
as an alternative, which circumvents the refresh problem for Http-
Server.

Creating	a	Proxy	for	Mock	Services
Remember, in the code samples, the mock services run on a different
port and instance. The Angular application runs on localhost
(127.0.0.1) on port 4200. The mock web server runs on localhost on
port 3000. Typically, web browsers do not allow users to access
services on different domains. On a developer machine, consider the
solution shown in Listing A-1 to access the mock services.

Con�igure a proxy for the Angular application, and create a new �ile,
called proxy.conf.json.

{
 "/api": {
 "target": "http://localhost:3000",
 "secure": false
 }

}

Listing	A-1 Angular Application Proxy

Notice that an API call with the pre�ix /api is proxied to a target of
localhost:3000. The Angular application in the browser invokes
API calls on port 4200. The reroute to port 3000 is abstracted from the
browser.

Next, specify the proxy con�iguration on the ng serve command.
Consider the following code snippet. The option --proxy-config
provides the con�iguration �ile.

"start": "npm run start-api & ng serve --proxy-
config proxy.conf.json",

You may specify a proxy with Http-Server (used while running the
bundled application). Consider the following snippet:

"start-http-server": "yarn build && http-server
dist/web-arcade --proxy http://localhost:3000",

Using	the	Bottom	Sheet	for	a	Die	Roll
When we started the book, one of the �irst components developed was
a die. The component �iles are in the src/components/dice
directory. Considering it was one of the �irst components in the sample
project, routing was not introduced. Later, we extended the solution.

In the �inal solution, you launch the die within a bottom sheet, as
shown in Figure A-1, using the button on the toolbar. As you know, the
die animates, giving the impression of rolling a die.

Notice that the die is launched on the Game List page. Remember,
the component for the game list is BoardGamesComponent. The code
is located in the directory src/app/components/board-games.

Figure	A-1 Rolling a die in the Web Arcade application

Adding	the	Bottom	Sheet	in	Web	Arcade
To begin using a bottom sheet, import the Angular Material module for
the bottom sheet in the App Module, as shown in Listing A-2. See lines 1
and 11, which import MatBottomSheetModule into AppModule.

01: import { MatBottomSheetModule } from
'@angular/material/bottom-sheet';
02:
03: @NgModule({
04: declarations: [
05: /* Component declarations go here */
06:],
07: imports: [
08: BrowserModule,
09: MatCardModule,
10: MatInputModule,

11: MatBottomSheetModule,
12:],
13: providers: [
14: // Services and providers declared
here
15:],
16: bootstrap: [AppComponent]
17: })
18: export class AppModule { }

Listing	A-2 Import MatBottomSheetModule

Showing	the	Bottom	Sheet	with	the	Die	Component
Next, import and inject the bottom sheet in BoardGamesComponent
(for the game list). Consider Listing A-3.

01: import { Component, OnInit } from
'@angular/core';
02: import { MatBottomSheet } from
'@angular/material/bottom-sheet';
03: import { DiceComponent } from
'../dice/dice.component';
04:
05: @Component({
06: selector: 'wade-board-games',
07: templateUrl: './board-games.component.html',
08: styleUrls: ['./board-games.component.sass']
09: })
10: export class BoardGamesComponent implements
OnInit {
11: constructor(
12: private bottomSheet: MatBottomSheet) { }
14: }

Listing	A-3 Import and Inject the Bottom Sheet in a Board Games Component

See line 2, which imports the bottom sheet’s TypeScript module in
the Angular Material package. Next, see lines 11 and 12 in the code.

They inject the bottom sheet into the component.
Also, notice line 3. It imports DiceComponent that encapsulates

the die functionality. Next, include the function in Listing A-4, which
draws the bottom sheet and shows a die on it.

1: showDice(){
2: this.bottomSheet.open(DiceComponent);
3: }

Listing	A-4 Open a Bottom Sheet with Dice

Notice that the function uses this.bottomSheet, an instance
injected into the component constructor. The open() function draws
the bottom sheet. You pass DiceComponent as a parameter. The
bottom sheet is a container drawn at the bottom of the page. The
container hosts DiceComponent that is passed in as a parameter. See
Figure A-1 for the result.

Invoke this function by clicking the Show Dice menu button.
Consider Listing A-5 for the board games HTML template with the
menu and the button.

1: <mat-toolbar color="primary">
2: <mat-toolbar-row>
3: Game List
4:
5: <button mat-button
(click)="showDice()">Show Dice</button>
6: </mat-toolbar-row>
7: </mat-toolbar>

8: <!-- rest of the board games template goes here
-->

Listing	A-5 Board Games Template Launching Bottom Sheet

See line 5 with the click handler, which invokes the showDice()
function. See Figure A-1 for the result.

Using	a	Hash	Location	Strategy
Angular provides the following two location strategies:
PathLocationStrategy: The default location strategy. The
screenshots and �igures in the book use this strategy.
HashLocationStrategy: Traditional location strategy, which
uses the # pre�ix a path. See Figure A-2.

Figure	A-2 Hash routing

Most modern applications use the path location strategy. It does not
include any special characters in the URL. When an Angular application
uses the path location strategy, the web server is expected to return
index.html to load the Angular application for all the routes in the
application. If a particular web server does not support this behavior
(or is not con�igured to do so), you might fall back to the traditional
hash routing strategy.

Note Remember that Web Arcade uses a developer-class web
server, Http-Server. With the following con�iguration that we used in
the sample application, reloading a page at a particular route (for
example http://localhost:8080/home) returns an error. As
mentioned earlier, the web server needs to return index.html for
all the routes so that the Angular application in the browser
manages a route. Considering that we don’t have such a
con�iguration, you may switch to hash routing for Web Arcade.

http-server dist/web-arcade --proxy
http://localhost:3000

To enable hash routing, update AppRoutingModule in
src/app/app-routing.module.ts. See Listing A-6, line 19.

01: import { NgModule } from '@angular/core';
02: import { RouterModule, Routes } from
'@angular/router';
03: import { BoardGamesComponent } from
'./components/board-games/board-games.component';
04: import { GameDetailsComponent } from
'./components/game-details/game-
details.component';
05:
06: const routes: Routes = [{
07: path: "home",
08: component: BoardGamesComponent
09: }, {
10: path: "details",
11: component: GameDetailsComponent
12: }, {
13: path: "",
14: redirectTo: "/home",
15: pathMatch: "full"
16: }];
17:
18: @NgModule({

19: imports: [RouterModule.forRoot(routes,
{useHash: true})],
20: exports: [RouterModule]
21: })
22: export class AppRoutingModule { }

Listing	A-6 Enabling Hash Routing

Summary
This addendum detailed content that did not �it into the main chapters
of the book. First, we detailed how to con�igure a proxy for mock
services. It is typical of Angular and browsers to add a proxy to access
resources on different domains than that of the browser application.

Next, we detailed how to enhance the roll-a-die feature, by
launching it in a bottom sheet. We covered how to add a bottom sheet
to the Web Arcade application and integrate it with the die component.

Finally, we detailed a hash location strategy, an alternative to the
default path location strategy. We speci�ically addressed the problem of
refreshing pages deployed on Http-Server.

References	and	Links
The book and code samples use the following extensively:

Angular framework
Angular Material Library, which is Angular’s implementation of
Material Design

Use the following link for Angular’s of�icial documentation on the
framework:

https://angular.io/docs
To learn how to build applications with Angular and Material

Design, read the following book:
https://www.apress.com/us/book/9781484254332
The following provides documentation on SASS and SCSS for

stylesheet development. Web Arcade and the code samples use the
indented syntax provided with SASS. Please use the following URL to
learn more about SASS and SCSS:

https://angular.io/docs
https://www.apress.com/us/book/9781484254332

https://sass-lang.com/documentation/syntax
Node Package Manager (NPM) is a default tool for installing node

modules, packages, and libraries. The book uses it extensively. To learn
more about Node.js and NPM, use the following links:
NPM	documentation: https://docs.npmjs.com/about-npm
Node.js	documentation: https://nodejs.dev/learn

Yarn is another package manager and a popular alternative. To learn
more about Yarn, use the following links:
Website: https://yarnpkg.com/
Yarn	documentation:
https://classic.yarnpkg.com/en/docs/

The book and the code samples use Angular CLI extensively to
create and maintain the Angular application. The book uses the
following documentation as a reference:

https://angular.io/cli
The code samples use the Http-Server package for running a

developer class web server.
Use	the	following	link	for	NPM	documentation	on	the	package:
https://www.npmjs.com/package/http-server
Use	the	following	link	for	the	GitHub	code	repository:
https://github.com/http-party/http-server

The code sample uses url() in SASS (stylesheets). Please use the
following link for documentation on the usage:

https://developer.mozilla.org/en-
US/docs/Web/CSS/url()

Service workers are a core concept in the book. The book
extensively uses documentation provided by Google developer pages.
Refer to the following link:

https://developers.google.com/web/fundamentals/p
rimers/service-workers

While using HTTP services, the API uses HTTP methods, and there
are conventions for selecting one to use. The code samples and the
book take references from the following documentation:

https://sass-lang.com/documentation/syntax
https://docs.npmjs.com/about-npm
https://nodejs.dev/learn
https://yarnpkg.com/
https://classic.yarnpkg.com/en/docs/
https://angular.io/cli
https://www.npmjs.com/package/http-server
https://github.com/http-party/http-server
https://developer.mozilla.org/en-US/docs/Web/CSS/url
https://developers.google.com/web/fundamentals/primers/service-workers

https://developer.mozilla.org/en-
US/docs/Web/HTTP/Methods

The book uses Node.js and ExpressJS for developing mock HTTP
services. Use the following documentation for learning more about
Express:

https://expressjs.com/
Use the following link for a guide:
https://expressjs.com/en/guide/routing.html
IndexedDB is a core concept detailed in the book, which takes

references from the API and an implementation from the following
documentation and the links:
W3C	Recommendation	(at	the	time	of	writing):
https://www.w3.org/TR/IndexedDB-2/
W3C	Working	Draft	(at	the	time	of	writing):
https://www.w3.org/TR/IndexedDB/

The IndexedDB documentation on the Mozilla.org website is at the
following link:

https://developer.mozilla.org/en-
US/docs/Web/API/IndexedDB_API

A Wikipedia article on IndexedDB can be found here:
https://en.wikipedia.org/wiki/Indexed_Database_A

PI
Browser support for IndexedDB can be found here:
https://caniuse.com/indexeddb
The book explains how to use the Dexie.js library as an alternative

API for the default IndexedDB API. It simpli�ies IndexedDB access. Refer
to the documentation for Dexie.js at the following link:

https://dexie.org/docs/Dexie.js
Verify browser support for a feature at CanIUse.com, found here:
https://caniuse.com/indexeddb
The book mentions the following integrated development

environments (IDEs) for the code:
Visual	Studio	Code: https://code.visualstudio.com/
Sublime	Text: https://www.sublimetext.com/

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://expressjs.com/
https://expressjs.com/en/guide/routing.html
http://www.w3.org/TR/IndexedDB-2/
http://www.w3.org/TR/IndexedDB/
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://en.wikipedia.org/wiki/Indexed_Database_API
https://caniuse.com/indexeddb
https://dexie.org/docs/Dexie.js
https://caniuse.com/indexeddb
https://code.visualstudio.com/
https://www.sublimetext.com/

Atom: https://atom.io/
WebStorm: https://www.jetbrains.com/webstorm/

Index
A
activateUpdate() function
addBulkComments() function
Add comment
Add comments of�line/online

event listeners
identify getter
IndexedDB
IsOnline �ield
print
user experience
web-arcade database
Window service

Angular application
CLI command
con�igure services
create services
HTTPS
http-server
HTTP service
of�line features
provide a service
run
service workers
web arcade

Angular CLI
Angular code
Angular components
Angular module
Angular routing
@angular/service-worker package

https://atom.io/
https://www.jetbrains.com/webstorm/

App component
appData �ield
Apps
Assets directory
Atom

B
Board games

data
endpoint
interfaces
mock data

C
Cascading style sheets (CSS)
checkForUpdates() function
concatWith() function
Content delivery network (CDN)
createObjectStore() function

D
Data structure
Delete action
deleteSynchronizedComments() function
Dexie.js
Dexie package

add comment
delete action
install
JS store
local forage
PouchDB
retrieve data
transactions
update action
ZangoDB

dice component
Document Object Model (DOM)

E
emit() function
European Computer Manufacturers Association (ECMA)
EventEmitter object

F
�ilter() function
�ind() function

G
gameSelected function
getAllCachedComments() function
getAll() function
getComments() function
get() function
getGameById() function

H
HTTP POST method
HTTPS connection
Http-Server
HTTP service
HyperText Markup Language (HTML)

I
Icon �iles
IdbStorageAccessService
IndexedDB

advantages
angular service
browser support
createIndex API
creating object store
de�inition
game details page
limitations
native browser API

terminology
web applications

IndexedDB, update data
init() function
inject() decorator
Input() decorator
Integrated development environment (IDE)
interval() function

J,	K
JavaScript API
JavaScript Object Notation (JSON)
Java Virtual Machine (JVM)

L
Leaner style sheets (LESS)
Long-term support (LTS)

M
macOS
Mock HTTP services

adding comments
game details ID, �iltering
retrieving comments

Mock services

N
ng generate service command
NgModules
ngOnInit() function
Node.js
Node Package Manager (NPM)

O
onAction() function
onerror() function
Online event
Online/of�line events

onsuccess() function
onsuccesscallback() function
onupgradeneeded function
open() function
Output() decorator

P,	Q
Pattern matching
post() function
Progressive web app (PWAs)

R
readFile() function
Relational database management system (RDBMS)
Retrieve data
rollDice() function

S
send() function
ServiceWorkerModule
Service workers

angular application
browser support
cache data
inspect
lifecycle
pattern matching
strategy
Web Arcade

showOnDice() function
Single-page applications (SPAs)
Snackbar component
Source code management (SCM) tool
Structured Query Language (SQL)
Stylesheets
Sublime text
SwCommunication service

identify

update
SwUpdate service
Synchronize of�line comments, server

bulking update
delete data, IndexedDB
online
retrieving data, IndexedDB

Syntactically awesome style sheets (SCSS)

T
Technical Committee 39 (TC39)
Transaction
transformCommentDataStructure() function
TypeScript �ile

U
Update action

V
Visual Studio Code

W,	X
wade-dice
Web Arcade

game details page
add comments
creating component
GET service calls
HTTP service
navigate
POST service calls
routing

Web Arcade IndexedDB
connect
initializes
object store/table
versions

WebStorm

Y,	Z
Yarn

	Front Matter
	1. Building Modern Web Applications
	2. Getting Started
	3. Installing an Angular Application
	4. Service Workers
	5. Cache Data with Service Workers
	6. Upgrading Applications
	7. Introduction to IndexedDB
	8. Creating the Entities Use Case
	9. Creating Data Offline
	10. Dexie.js for IndexedDB
	Back Matter

